推荐系统
介绍(对话)推荐系统相关的一些基础知识、前沿动态(论文)、代码等内容。
CoreJT
中科院自动化所在读直博生,感兴趣的研究方向:文本分类、情感分析、机器阅读理解与问答系统以及对话系统。
展开
-
推荐系统 | (4) 可解释推荐系统---知其然,知其所以然
原文地址作者:王希廷 谢幸利用强化学习实现封装式可解释推荐系统单纯的推荐结果和推荐结果+理由的组合,哪个更让你信服?长篇累牍的推荐语和言简意赅的关键词,你更愿意看哪个?这是人们每天都会面对的场景,也是可解释推荐系统研究需要不断优化的问题。在上一篇文章《可解释推荐系统:身怀绝技,一招击中用户心理》中,微软亚洲研究院的研究员王希廷和谢幸介绍了可解释推荐系统的分类、推荐解释生成方法以及面临的机遇和挑战。本文中,研究员从解释的目标出发,结合现有的方法流程,介绍了他们改进过的新的结构,最后也反思了研究有待改进转载 2020-10-13 10:21:25 · 1898 阅读 · 0 评论 -
推荐系统 | (3) 可解释推荐系统---身怀绝技,一招击中用户心理
原文地址原文作者:王希廷、谢幸转载 2020-10-09 14:42:55 · 1015 阅读 · 1 评论 -
推荐系统 | (2) 个性化推荐系统研究热点
原文地址本文作者:谢幸、练建勋、刘政、王希廷、吴方照、王鸿伟、陈仲夏推荐系统作为一种过滤系统,不仅能够帮助用户在海量的信息中快速寻找到自己需要的内容,也能帮助商家把自己的商品更精准地推荐给用户,增强用户与商家之间的交互性。搭建更加有效的个性化推荐系统,对商家和用户都具有更深远的意义。在本文中,微软亚洲研究院社会计算组的研究员们从深度学习、知识图谱、强化学习、用户画像、可解释性推荐等五个方面,展望了未来推荐系统发展的方向。“猜你喜欢”、“购买过此商品的用户还购买过……”对于离不开社交平台、电商、新闻阅读转载 2020-10-07 17:04:50 · 3923 阅读 · 0 评论 -
推荐系统 | (1) 任务分类
推荐系统(recommender system)指的是从用户过去的购买习惯/记录中学习用户的兴趣,从而给用户推荐合适的商品,是一个单轮交互的过程。任务型对话系统(task-oriented dialogue system)通过多轮对话,在对话过程中,捕捉用户的兴趣,完成一个特定的任务,是一个多轮交互的过程。对话推荐系统(conversational recommender system, CRS)由于推荐系统更多的是去关注用户过去的偏好,但是用户当前的兴趣可能已经改变。而对话系统更多的..原创 2020-10-03 17:26:49 · 1787 阅读 · 0 评论