ES常识

1、es查询dsl的filter与must,term与match的区别

    对于 keyword类型的字段而言, 用 term 和 match 都是可以查询的;但对于 text 类型的分词字段而言,只能用match 才能够查询到结果;

    根据嵌套类型查询  (filter 与 must 是属于同一个级别的查询方式,都可以作为 query->bool  的属性)
      filter: 不计算评分, 查询效率高;有缓存;  (推荐)
        + term: 精确匹配;
        + match: 模糊匹配, 倒排索引;
    must: 要计算评分,查询效率低;无缓存;
        +term: 精确匹配 , 要评分;
        +match:模糊匹配, 要评分;

2、关于ES字符串类型(Text vs keyword)的选择

ElasticSearch 5.0以后,string类型有重大变更,移除了string类型,string字段被拆分成两种新的数据类型: text用于全文搜索的,而keyword用于关键词搜索。

ElasticSearch字符串将默认被同时映射成textkeyword类型,将会自动创建下面的动态映射(dynamic mappings):

这就是造成部分字段还会自动生成一个与之对应的“.keyword”字段的原因。

Text vs. keyword

Text:会分词,然后进行索引

       支持模糊、精确查询

       不支持聚合

keyword:不进行分词,直接索引

       支持模糊、精确查询

       支持聚合

由于接口中有的需要源字段,而有的需要keyword字段,需要前后端做判断,十分繁琐且很难保持接口统一。

3、多字段聚合

通常情况,terms聚合都是仅针对于一个字段的聚合。因为该聚合是需要把词条放入一个哈希表中,如果多个字段就会造成n^2的内存消耗。

不过,对于多字段,ES也提供了下面两种方式:

  • 1 使用脚本合并字段
  • 2 使用copy_to方法,合并两个字段,创建出一个新的字段,对新字段执行单个字段的聚合。

4、空字符串判断处理

查询出没有该字段的文档

GET index名称/_count
{
  "query": {
    "bool": {
      "must_not": [
        {
          "exists": {
            "field": "字段名称"
          }
        }
      ]
    }
  }
}

字段值为空字符串

GET index名称/_count
{
  "query": {
    "bool": {
      "must_not": [
        {
          "wildcard": {
            "字段名称": {
              "value": "*"
            }
          }
        }
      ]
    }
  }
}

字段值不为空字符串的文档

GET index名称/_count
{
  "query": {
    "wildcard": {
      "字段名称": {
        "value": "*"
      }
    }
  }
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值