2.3 智能控制
2.3.1 智能控制算法介绍
智能控制算法的优化:性能提升的秘诀
https://blog.csdn.net/universsky2015/article/details/137309308
2.3.2 案例一:特斯拉自动驾驶汽车未能识别白色卡车导致车祸
特斯拉自动驾驶汽车未能识别白色卡车导致车祸的事件,确实发生过多起,以下是对这些事件的归纳与分析:
一、事故概述
美国底特律事故:
时间:当地时间2021年3月11日下午
地点:美国底特律市郊
车辆:特斯拉Model Y
事故情况:特斯拉Model Y撞上了一辆半挂卡车,车辆钻进货柜下方,损毁严重,车上2名人员受伤。
原因推测:特斯拉的自动驾驶系统可能错误地将卡车的白色货厢识别成了天空。
美国佛罗里达州事故:
时间:2016年5月
地点:美国佛罗里达州
车辆:特斯拉Model S
事故情况:特斯拉Model S在Autopilot状态下与正在转弯的白色半挂卡车发生碰撞,车辆被“切头”,驾驶员不幸身亡。
原因推测:同样是由于自动驾驶系统未能正确识别白色卡车。
台湾高速公路事故:
时间:2020年6月
地点:台湾省嘉义市附近的高速公路
车辆:特斯拉Model 3
事故情况:特斯拉Model 3未能识别到前方因事故翻车的白色厢式货车,撞进货柜里,但幸运的是没有造成人员死亡。
原因推测:自动驾驶系统存在“色盲”漏洞,无法识别白色物体。
数据来源:https://taiwanenglishnews.com/tesla-on-autopilot-crashes-into-overturned-truck/
二、技术分析
特斯拉的自动驾驶系统主要依赖视觉识别方案,传感器以摄像头为主,虽然成本较低,但在光线复杂或面对白色等特定颜色物体时,可能无法有效应对。此外,虽然特斯拉还配备了毫米波雷达等传感器,但受限于感知距离和响应时间,如果车速过快,系统也无法迅速作出反应。
三、特斯拉的回应与态度
特斯拉在面临这些事故时,曾强调车主没有保持注意力,并声称官方的调查结论显示特斯拉没有责任。然而,随着事故的频发和舆论的压力,特斯拉最终承认其Autopilot和FSD功能只是驾驶辅助功能,并不具备完全自动驾驶的能力。特斯拉在官网上也仅有一条不起眼的免责声明,指出目前可用的功能需要驾驶员主动进行监控。
四、社会影响与伦理考量
社会影响:
- 自动驾驶技术的发展将对整个社会产生深远影响,包括交通方式、城市规划、就业市场等。
- 这些影响需要得到充分的评估和考虑,以确保技术的可持续性和社会的福祉。
伦理考量:
- 在推动自动驾驶技术发展的同时,我们应关注其对社会伦理和价值观的影响。
- 例如,如何平衡技术进步与个人隐私、数据安全之间的关系?如何确保技术的公平性和可访问性?
2.3.3 案例二:拉斯维加斯自动驾驶巴士发生碰撞
一、事件背景
时间:该事件发生在2017年11月(也有报道提及为11月8日或11月10日,但核心时间点为11月)。
地点:美国拉斯维加斯市。
车辆:涉事车辆为一辆由法国Navya公司生产的Arma无人驾驶巴士,与一辆货运卡车发生碰撞。
数据来源:https://www.bbc.com/news/technology-41923814#:~:text=A%20self%2Ddriving%20shuttle%20bus,human%20driver%20of%20the%20lorry.
二、事件经过
自动驾驶巴士在拉斯维加斯的一条繁忙路段上进行了首次公开测试,该路段全长约0.6英里(约1公里)。
巴士上没有方向盘或刹车装置,完全依靠GPS、摄像头和光检测传感器进行导航和避障。
在测试开始后的不久(有报道指出是上路一个小时内),一辆送货卡车在倒车时未能及时刹车,与自动驾驶巴士发生了碰撞。
三、事故结果
碰撞导致自动驾驶巴士的前保险杠受损,但幸运的是,车上8名乘客和卡车司机均未受到任何伤害。
当地官员和AAA的发言人表示,这起事故的主要责任在于人类驾驶司机,因为无人驾驶巴士的传感器已经及时检测到了碰撞威胁并采取了刹车措施,但人类司机未能注意到这一潜在的威胁。
四、后续处理与影响
尽管发生了这起事故,但无人驾驶巴士的试运营测试并未因此终止。按计划,它将继续在拉斯维加斯的街道上行驶整整一年,以评估乘客对其产品的热情以及技术的可靠性。
此事件引发了公众对自动驾驶技术安全性和可靠性的进一步关注和讨论。
五、技术分析与反思
自动驾驶技术虽然具有巨大的潜力和前景,但在实际应用中仍面临许多挑战和局限性。
人类驾驶员在驾驶时的行为不端或鲁莽行事也是导致自动驾驶汽车事故频发的重要原因之一。
为了提高自动驾驶技术的安全性和可靠性,需要不断加强技术研发和测试,同时加强对人类驾驶员的教育和管理。
综上所述,拉斯维加斯自动驾驶巴士发生碰撞的事件虽然是一次小事故,但它提醒我们自动驾驶技术的发展仍面临许多挑战和问题需要解决。在推动自动驾驶技术发展的同时,我们应保持谨慎和理性的态度,确保技术的安全性和可靠性得到充分验证和保障。
2.3.4 案例三:波音737自动驾驶飞机事故频发
2019年3月10日,埃塞俄比亚航空302航班(一架波音737 MAX 8客机)在起飞后不久坠毁,导致机上157人全部遇难。这起事故与2018年10月印尼狮航610航班(同样是一架737 MAX 8)的事故有相似之处,两起事故均与波音737 MAX的机动特性增强系统MCAS故障密切相关。
数据来源:https://www.bbc.com/news/world-africa-47553174
一、事故原因分析
1、MCAS系统故障:
- MCAS的设计初衷是防止飞机因迎角过大而失速。当系统检测到迎角过高时,会自动压低机头以恢复飞行姿态。
- 在埃航302航班事故中,MCAS因错误的迎角传感器数据被触发,导致飞机机头不断被强制下压。
2、飞行员试图人为控制:
-
飞行员在发现飞机异常后,按照紧急程序尝试手动调整飞机姿态。
-
然而,MCAS系统会反复触发,且每次触发都会进一步压低机头,导致飞行员难以完全控制飞机。
-
飞行员曾尝试关闭MCAS系统,但由于飞机速度过快和高度过低,最终未能成功挽救飞机。
3、设计缺陷与培训不足:
-
MCAS系统最初仅依赖单一迎角传感器,缺乏冗余设计,容易因传感器故障导致误判。
-
波音未在飞行员培训中充分说明MCAS的存在和操作方式,导致飞行员在紧急情况下缺乏应对经验。
二、事故后的改进措施
1、MCAS系统升级:
-
波音对MCAS进行了多项改进,包括:
-
依赖多个迎角传感器的数据,而非单一传感器。
-
限制MCAS的触发次数,防止系统反复干预。
-
降低MCAS的权限,确保飞行员手动操作优先于系统自动调整。
2、飞行员培训加强:
-
航空公司被要求对737 MAX飞行员进行额外培训,重点包括MCAS系统的操作和故障应对。
-
培训内容还包括如何在紧急情况下快速识别和关闭MCAS。
3、全球停飞与复飞:
-
事故发生后,全球范围内的737 MAX机型被停飞,直到波音完成改进并获得各国航空监管机构的批准。
-
2020年底至2021年初,美国联邦航空管理局(FAA)、欧洲航空安全局(EASA)等机构陆续批准737 MAX复飞。
三、事故的深远影响
1、对波音的信任危机:
-
两起事故严重损害了波音的声誉,并引发了对其安全文化和工程流程的广泛质疑。
-
波音面临巨额赔偿、诉讼和订单取消,财务和品牌形象受到重大打击。
2、航空安全监管的反思:
-
事故暴露了航空监管体系中的漏洞,特别是对新型飞机认证流程的审查不足。
-
各国监管机构加强了对飞机设计和认证的审查力度。
3、公众信心的恢复:
-
尽管737 MAX已复飞,但公众对其安全性的信任恢复仍需时间。
-
航空公司需要通过透明沟通和严格的安全措施重建乘客信心。
四、总结
埃航302航班事故是航空史上的一次重大悲剧,暴露了自动化系统设计、人为因素协调和监管审查中的深层次问题。通过技术改进、培训加强和监管优化,航空业正在努力避免类似事故再次发生。然而,这一事件也提醒我们,航空安全需要持续的关注和改进。
2.3.5 智能控制问题分析
技术的不成熟。
对周遭环境变化的敏感度不够。
人机结合的问题。
责任难划分。
2.3.6 智能控制算法 - 伦理与职业规范思考题
伦理挑战:
责任归属: 当智能控制算法出现错误或造成损害时,谁应该承担责任?是开发者、使用者、还是算法本身?
算法偏见: 智能控制算法可能会从训练数据中学习到偏见,从而导致不公平或歧视性的结果。如何确保算法的公平性和公正性?
隐私安全: 智能控制算法通常需要收集和处理大量数据,这可能会引发隐私泄露和数据安全问题。如何平衡算法性能与隐私保护?
人类自主性: 随着智能控制算法越来越强大,人类对决策的控制权可能会被削弱。如何确保人类在关键决策中保持自主性?
算法透明度: 许多智能控制算法是“黑箱”模型,其决策过程难以解释。如何提高算法的透明度,使其更容易被理解和信任?
职业规范:
专业能力: 开发和部署智能控制算法的工程师需要具备哪些专业能力和职业道德?
知情同意: 在使用智能控制算法之前,是否需要获得用户的知情同意?如何确保用户充分了解算法的风险和局限性?
数据伦理: 在收集和使用数据训练智能控制算法时,需要遵守哪些数据伦理原则?
算法审计: 是否需要建立独立的算法审计机制,以确保智能控制算法的安全性和可靠性?
社会影响: 智能控制算法的发展可能会对社会产生深远影响。工程师在开发算法时,需要考虑哪些社会影响?
深入思考:
如何制定全球统一的智能控制算法伦理规范?
如何培养具有社会责任感的智能控制算法工程师?
如何平衡智能控制算法的发展与伦理规范之间的冲突?
智能控制算法的未来发展方向是什么?它将如何影响人类社会?
提示:
这些问题旨在引发对智能控制算法伦理和职业规范的深入思考,并促进相关领域的讨论和发展。
在回答问题时,可以参考相关文献、案例研究和专家观点。
可以结合自身经验和观察,提出更具针对性的问题和见解。
2.3.7 智能控制算法 - 伦理与职业规范辩论题
伦理挑战:
正方:智能控制算法的决策过程应该完全透明,以确保公平和公正。
反方:算法的完全透明会暴露其弱点,使其更容易被恶意利用。
正方:应该禁止开发和使用具有潜在危害的智能控制算法,例如自主武器。
反方:禁止开发和使用具有潜在危害的智能控制算法会阻碍技术进步,并可能使我们在未来处于劣势。
正方:智能控制算法应该被赋予法律人格,以便对其行为负责。
反方:智能控制算法只是工具,不应该被赋予法律人格,责任应该由开发者或使用者承担。
职业规范:
正方:开发智能控制算法的工程师应该对其算法的潜在社会影响负责。
反方:工程师的责任是开发高效的算法,社会影响应该由政策制定者和社会来考虑。
正方:应该建立强制性的算法伦理审查制度,以确保智能控制算法的安全性和可靠性。
反方:强制性的算法伦理审查制度会阻碍创新,并增加开发成本。
正方:使用智能控制算法的公司应该对其算法的决策负责,即使这些决策是由算法自主做出的。
反方:公司只应该对其算法的设计和使用方式负责,而不应该对算法自主做出的决策负责。
深入思考:
正方:智能控制算法的快速发展最终会超越人类控制,对人类构成威胁。
反方:智能控制算法是人类创造的工具,始终会处于人类的控制之下。
正方:应该优先考虑开发对社会有益的智能控制算法,例如医疗诊断和环境保护。
反方:不应该限制智能控制算法的发展方向,市场会决定哪些算法最有价值。
正方:政府应该加强对智能控制算法的监管,以确保其安全和可控。
反方:过度监管会抑制创新,阻碍智能控制算法的发展。
提示:
这些辩论题旨在引发对智能控制算法伦理和职业规范的深入思考和讨论。
在辩论时,可以参考相关文献、案例研究和专家观点。
可以结合自身经验和观察,提出更具针对性的论点和论据。