pytorch分布式系列3——分布式训练时,torch.utils.data.distributed.DistributedSampler做了什么?

本文详细解释了torch.utils.data.distributed.DistributedSampler在PyTorch分布式训练中的作用,包括数据划分、epoch同步和batch大小调整。通过实例展示了不同配置下数据分布的变化以及如何解决数据平衡和批大小问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分布式训练时,torch.utils.data.distributed.DistributedSampler做了什么?

试验用到的code
import os
import sys

import torch
import torch.nn as nn
import torch.distributed as dist
import torchvision

from torch.utils.data import Dataset, DataLoader

import numpy as np

class InnerDS(Dataset):
    def __init__(self, n=8):
        self.n = n

    def __len__(self):
        return self.n

    def __getitem__(self, item):
        np_img = np.random.rand(3,224,224)
        image = torch.from_numpy(np_img).float()
        label = np.random.randint(0,9)
        return image, label, item


local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
rank = int(os.environ['RANK'])

dist.init_process_group('nccl',world_size=world_size, rank=rank)


torch.cuda.set_device(local_rank)


# case 1
# ds = InnerDS(8)
# sampler = torch.utils.data.distributed.DistributedSampler(ds)
# dataloader = DataLoader(ds, batch_size=4, drop_last=True)

# case 2
# ds = InnerDS(8)
# sampler = torch.utils.data.distributed.DistributedSampler(ds)
# dataloader = DataLoader(ds, batch_size=4, sampler=sampler, drop_last=True)

# case 3
# ds = InnerDS(8)
# sampler = torch.utils.data.distributed.DistributedSampler(ds)
# dataloader = DataLoader(ds, batch_size=4, sampler=sampler, drop_last=True)

# case 4
# ds = InnerDS(6)
# sampler = torch.utils.data.distributed.DistributedSampler(ds)
# dataloader = DataLoader(ds, batch_size=4, sampler=sampler, drop_last=False)


# case 5
# ds = InnerDS(5)
# sampler = torch.utils.data.distributed.DistributedSampler(ds)
# dataloader = DataLoader(ds, batch_size=4, sampler=sampler, drop_last=False)

# case 6
# ds = InnerDS(10)
# sampler = torch.utils.data.distributed.DistributedSampler(ds)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值