一、不完全信息静态博弈和贝叶斯纳什均衡
1.1不完全信息博弈
完全信息:收益函数是共同知识。参与者对其他参与人策略空间、行动特征以及收益完全了解。完全信息自然不首先行动(或自然行动被所有参与人准确观察),也就是没有事先的不确定性.
不完全信息:
至少有一个
人不能确定其他人的收益函数
不完全信息博弈:
(1)收益函数依赖于自然的选择(外部环境)
例:在房地产商开发博弈中,若市场需求是不确定的,即为一不完全信息博弈。


分析:
p>1/3时,(开发,开发)是占优均衡;
p≤1/3时,纯策略纳什均衡:(开发,不开发)和(不开发,开发);混合策略纳什均衡:双方都以(1+3p)/2的概率选择开发。
(2)A的收益函数是B私人信息的函数,也就是说A的收益与B有关(内部对手)
例:市场进入博弈模型
1)完全信息博弈

分析:
完全信息,所以进入者知道在位者的收益。
高成本:纯策略纳什均衡(进入、默许),(不进入、斗争);
低成本:纯策略纳什均衡(不进入、斗争)。
2)不完全信息博弈:
若在位者:高成本:p,低成本:1-p(概率)

分析:
选择进入的期望利润为: 40p+(-10)(1-p)= 50p-10(解释:当进入者选择进入时,在位者在高成时会选择默认,低成本时选择斗争)
选择不进入的期望利润为:0
因此,潜在进入者的最优选择是:若