定积分中面积微元的近似问题

文章探讨了在计算定积分时,如何通过将区间划分为相等部分并用长方体近似面积微元的方法。尽管对于某些函数,长方体可能不完全适用,但当考虑高阶无穷小时,此近似在极限情况下变得合理。文章利用弧微分的知识,证明了在特定条件下,面积微元可以被有效近似为长方形的面积,从而证实了这种方法的合理性。
摘要由CSDN通过智能技术生成

        求定积分\int_{a}^{b}f(x)dx的常用方法是将区间[a,b]分成无数多个相等长度为dx的区间[x_{i},x_{i+1}],并取以f(x_{i})f(x_{i+1})为高、dx为底的长方体作为每一段面积微元的近似,最后求和得到其值。但是这难免引起一些困扰:如果f(x_{i})\neq f(x_{i+1}),那面积微元似乎不能用长方体来近似。然而事实证明,这种近似是合理的。接下来笔者将证明该方法的合理性。考虑到笔者能力有限,难免会出现错误,也希望各位读者能够悉心指出。

        ​​​​​​​

如图为一任意的函数f(x),现在我们对所截的面积微元进行分析。

        根据弧微分的知识,我们知道f(x)在区间[x_{i},x_{i+1}]上的弧微元ds就等于如图所示的梯形的斜边,因此,该面积微元就等于

\frac{1}{2}[f(x_{i})+f(x_{i+1})]dx

        其中f(x_{i+1})=f(x_{i})+dx\cdot tan\theta,因此面积微元又可以写成

\frac{1}{2}[f(x_{i})+f(x_{i})+dx\cdot tan\theta]dx=f(x_{i})dx+\frac{1}{2}(dx)^2\cdot tan\theta

         其中(dx)^2dx的高阶无穷小,当dx\rightarrow 0^+时,面积微元的大小就是f(x_{i})dx,即我们常取的长方形的面积。因此,在定积分的计算中取长方形来近似面积微元是完全合理的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值