微积分-积分4.2(定积分)

我们在4.1节中看到,以下形式的极限

lim ⁡ n → ∞ ∑ i = 1 n f ( x i ∗ ) Δ x = lim ⁡ n → ∞ [ f ( x 1 ∗ ) Δ x + f ( x 2 ∗ ) Δ x + ⋯ + f ( x n ∗ ) Δ x ] \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \lim_{n \to \infty} [f(x_1^*) \Delta x + f(x_2^*) \Delta x + \cdots + f(x_n^*) \Delta x] nlimi=1nf(xi)Δx=nlim[f(x1)Δx+f(x2)Δx++f(xn)Δx]

在计算面积时会出现。我们还看到,当我们尝试寻找物体所走距离时,这种形式的极限也会出现。事实证明,即使 f f f 不是一个正函数,这种类型的极限也会在各种情况下出现。在第5章和第8章中,我们将看到,这种形式的极限还会在计算曲线长度、固体体积、质心、由于水压导致的力、功等物理量时出现。因此,我们给这种极限形式一个特殊的名称和符号。

定积分的定义

如果 f f f 是在 a ≤ x ≤ b a \leq x \leq b axb 上定义的函数,我们将区间 [ a , b ] [a, b] [a,b] 分成 n n n 个子区间,每个子区间的宽度为 Δ x = ( b − a ) / n \Delta x = (b - a)/n Δx=(ba)/n。我们令 x 0 = a , x 1 , x 2 , … , x n = b x_0 = a, x_1, x_2, \dots, x_n = b x0=a,x1,x2,,xn=b 为这些子区间的端点,并且令 x 1 ∗ , x 2 ∗ , … , x n ∗ x_1^*, x_2^*, \dots, x_n^* x1,x2,,xn 为这些子区间内的任意样本点,因此 x i ∗ x_i^* xi 位于第 i i i 个子区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 内。那么, f f f a a a b b b 的定积分定义为
∫ a b f ( x )   d x = lim ⁡ n → ∞ ∑ i = 1 n f ( x i ∗ ) Δ x \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x abf(x)dx=nlimi=1nf(xi)Δx
前提是这个极限存在,并且对所有样本点的选择都给出相同的值。如果它确实存在,我们说 f f f [ a , b ] [a, b] [a,b] 上是可积的。

定义定积分的极限的确切含义如下:

对于每一个 ϵ > 0 \epsilon > 0 ϵ>0,存在一个整数 N N N,使得

∣ ∫ a b f ( x )   d x − ∑ i = 1 n f ( x i ∗ ) Δ x ∣ < ϵ \left|\int_a^b f(x) \, dx - \sum_{i=1}^{n} f(x_i^*) \Delta x\right| < \epsilon abf(x)dxi=1nf(xi)Δx <ϵ

对于每一个大于 N N N 的整数 n n n 和对 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 内的 x i ∗ x_i^* xi 的任意选择都成立。

注1 符号 ∫ ∫ 由莱布尼茨引入,称为积分符号。它是一个拉长的 S S S,之所以选择这个符号,是因为积分是求和的极限。在符号 ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx 中, f ( x ) f(x) f(x) 被称为被积函数,a 和 b 被称为积分限;a 是下限,b 是上限。目前,符号 dx 本身没有任何意义; ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx 是一个完整的符号。 d x dx dx 仅表示独立变量是 x x x。计算积分的过程称为积分运算

注2 定积分 ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx 是一个数字,它不依赖于 x x x。事实上,我们可以用任何字母代替 x x x,而不会改变积分的值:

∫ a b f ( x )   d x = ∫ a b f ( t )   d t = ∫ a b f ( r )   d r \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(t) \, dt = \int_{a}^{b} f(r) \, dr abf(x)dx=abf(t)dt=abf(r)dr

注3定义 中的和称为黎曼和,是以德国数学家伯恩哈德·黎曼(Bernhard Riemann,1826-1866)命名的。因此,定义 表明,任意可积函数的定积分可以通过黎曼和在任意所需的精度下进行近似。

我们知道,如果 f f f 为正数,则黎曼和可以解释为近似矩形面积的总和(见图 1)。通过将定义 与 4.1 节中的面积定义进行比较,我们看到定积分 ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx 可以解释为曲线 y = f ( x ) y = f(x) y=f(x) a a a b b b 之间的面积(见图 2)。
在这里插入图片描述

如果 f f f 取正值和负值,如图 3 所示,那么黎曼和是位于 x x x 轴上方的矩形面积与位于 x x x 轴下方的矩形面积之差(蓝色矩形面积减去金色矩形面积)。当我们取这些黎曼和的极限时,我们得到图 4 中所示的情况。定积分可以解释为净面积,即面积之差:
在这里插入图片描述

∫ a b f ( x )   d x = A 1 − A 2 \int_{a}^{b} f(x) \, dx = A_1 - A_2 abf(x)dx=A1A2

其中 A 1 A_1 A1 是位于 x x x 轴上方且在 f f f 图形下方的区域面积, A 2 A_2 A2 是位于 x x x 轴下方且在 f f f 图形上方的区域面积。

注4 尽管我们通过将 [ a , b ] [a, b] [a,b] 分成等宽的小区间来定义定积分 ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx,但在某些情况下,使用不等宽的小区间是有利的。例如,在练习 4.1.16 中,NASA 提供了速度数据,这些数据的时间间隔并不均等,但我们仍然能够估算出行驶的距离。而且,有一些数值积分的方法可以利用不等宽的小区间。

如果小区间的宽度分别为 Δ x 1 \Delta x_1 Δx1 Δ x 2 \Delta x_2 Δx2、……、 Δ x n \Delta x_n Δxn,我们必须确保在极限过程中所有这些宽度都趋于 0 0 0。只有当最大宽度 max ⁡ Δ x i \max \Delta x_i maxΔxi 趋于 0 0 0 时,这种情况才会发生。因此,在这种情况下,定积分的定义变为:

∫ a b f ( x )   d x = lim ⁡ max ⁡ Δ x i → 0 ∑ i = 1 n f ( x i ∗ ) Δ x i \int_{a}^{b} f(x) \, dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i abf(x)dx=maxΔxi0limi=1nf(xi)Δxi

注5 我们已经为可积函数定义了定积分,但并非所有函数都是可积的(见练习 71-72)。以下定理表明,绝大多数常见的函数实际上是可积的。该定理在更高阶课程中会得到证明。

定理 3

如果函数 f f f 在区间 [ a , b ] [a, b] [a,b] 上是连续的,或者如果 f f f 只有有限数量的跳跃不连续性,那么 f f f [ a , b ] [a, b] [a,b] 上是可积的;也就是说,定积分 ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx 存在。

如果 f f f [ a , b ] [a, b] [a,b] 上可积,那么定义 中的极限存在,并且无论我们如何选择采样点 x i ∗ x_i^* xi,都给出相同的值。为了简化积分的计算,我们通常将采样点选择为右端点。这时 x i ∗ = x i x_i^* = x_i xi=xi ,积分的定义如下简化。

定理 4

如果 f f f [ a , b ] [a, b] [a,b] 上可积,则
∫ a b f ( x )   d x = lim ⁡ n → ∞ ∑ i = 1 n f ( x i ) Δ x \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x abf(x)dx=nlimi=1nf(xi)Δx
其中
Δ x = b − a n 和 x i = a + i Δ x \Delta x = \frac{b - a}{n} \quad \text{和} \quad x_i = a + i \Delta x Δx=nbaxi=a+iΔx

例1 将以下极限表达式

lim ⁡ n → ∞ ∑ i = 1 n ( x i 3 + x i sin ⁡ x i ) Δ x \lim_{n \to \infty} \sum_{i=1}^{n} \left( x_i^3 + x_i \sin x_i \right) \Delta x nlimi=1n(xi3+xisinxi)Δx

在区间 [ 0 , π ] [0, \pi] [0,π] 上写成积分形式。

通过将给定的极限与定理4中的极限进行比较,我们发现当我们选择 f ( x ) = x 3 + x sin ⁡ x f(x) = x^3 + x \sin x f(x)=x3+xsinx 时,它们是相同的。已知 a = 0 a = 0 a=0 b = π b = \pi b=π。因此,根据定理4,我们有:

lim ⁡ n → ∞ ∑ i = 1 n ( x i 3 + x i sin ⁡ x i ) Δ x = ∫ 0 π ( x 3 + x sin ⁡ x ) d x \lim_{n \to \infty} \sum_{i=1}^{n} \left( x_i^3 + x_i \sin x_i \right) \Delta x = \int_{0}^{\pi} \left( x^3 + x \sin x \right) dx nlim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值