阿里云向量检索服务Milvus版是一款云原生、全托管的向量检索引擎,确保与开源Milvus的完全兼容,支持自建集群无缝迁移上云,集成Zilliz商业版内核提供比开源版更强大的检索性能和更高的准确性。在开源版版本的基础上增强了稳定性、可用性与可扩展性,能提供超大规模向量数据的相似性检索服务
操作步骤
以下示例展示了如何根据id
字段的数值范围进行过滤。
query_vectors = [
[-0.30932351869632435, -0.7132856078639205, 0.6006201320181415, 0.40140510356426784, -0.21223937444001328]
]
res = client.search(
collection_name="demo",
data=query_vectors,
filter="3 < id < 5", # 数值字段范围过滤条件。
limit=3
)
print(res)
步骤三:插入数据
Collection创建完毕后,系统会自动将其及其对应的索引加载至内存中,您可以使用如下代码向该集合中插入测试数据。
插入少量数据
插入更多数据
这段代码插入了预定义的10个Entity,每个Entity具有固定的向量和颜色标签。
data=[{'id': 0, 'vector': [-0.493313706583155, -0.172001225836391, 0.16825615330139554, -0.0198911518739604, -0.9756816265213708], 'color': 'green_5760'}, {'id': 1, 'vector': [0.6695699219225086, 0.49952523907354496, -0.49870548178008534, 0.8824655547230731, -0.7182693622931615], 'color': 'blue_2330'}, {'id': 2, 'vector': [-0.6057771959702387, 0.9141473782193543, 0.32053983678483466, -0.32126010092015655, 0.725222856037071], 'color': 'grey_9673'}, {'id': 3, 'vector': [0.14082089434165868, 0.9924029949938447, 0.7943279666144052, -0.7898608705081103, -0.9941425813199956], 'color': 'white_2829'}, {'id': 4, 'vector': [-0.46180540826224026, 0.33216876051895783, 0.5786699695956004, 0.8891120357625131, 0.04872530176990697], 'color': 'pink_9061'}, {'id': 5, 'vector': [-0.6097452740606673, 0.35648319550551144, -0.5699789153006387, 0.15085357921088316, -0.8817226997144627], 'color': 'pink_8525'}, {'id': 6, 'vector': [0.7843522543512762, -0.7663837586858071, -0.8681839054724569, 0.6880645348647785, -0.5151293183261791], 'color': 'green_5016'}, {'id': 7, 'vector': [-0.9967116931989293, 0.5741923070732655, -0.019126124261334976, -0.34163875885482753, -0.8189843931354175], 'color': 'brown_7434'}, {'id': 8, 'vector': [0.7347243385915765, -0.7358853080124825, -0.23737428377511716, 0.06980552357261627, -0.30613964550461437], 'color': 'blue_5059'}, {'id': 9, 'vector': [-0.21187155428455862, -0.3288541717216129, -0.32564136453418824, -0.14054963599686743, 0.5491320339870627], 'color': 'yellow_9887'}]
res = client.insert(
collection_name="demo",
data=data
)
步骤四:向量检索
重要
数据插入过程采用异步机制,这意味着在您完成数据插入操作后,系统并不会立即更新相应的搜索索引。为确保查询到最新插入的数据,建议您在数据插入后耐心等待数秒,待索引更新完成后再进行搜索操作
单一向量检索
批量向量检索
通过提供一个查询向量列表,您可以进行单一向量的相似性检索。
query_vectors = [
[-0.8832567462711804, -0.2999882617491647, 0.9921295273224382, -0.272575369985379, -0.688914679645338]
]
res = client.search(
collection_name="demo", # 查询collection
data=query_vectors, # 查询vectors。
limit=3, # 返回entities数量。
)
print(res)
步骤五:Filter检索
利用Schema中定义的字段,您可以设置过滤条件来精确限定检索范围,提高搜索效率。
基于数值字段过滤
基于元数据字段($meta)过滤
-
前提条件
-
已拥有阿里云账号。如果您还没有阿里云账号,请先完成注册,详情请参见阿里云账号注册流程。
-
首次购买时,需要您授予Milvus访问相应云资源的权限,详情请参见阿里云账号角色授权。
-
如果您使用RAM用户,需已完成RAM用户授权,详情请参见RAM用户授权。
-
进入阿里云Milvus页面。
-
登录阿里云Milvus控制台。
-
在左侧导航栏,单击Milvus实例。
-
-
在Milvus实例页面,单击创建实例。
-
在向量检索服务Milvus版页面,完成相关配置。
配置项
示例
描述
付费类型
包年包月
仅支持包年包月类型。
付费时长
1个月
默认购买时长为1个月,支持的购买时长以实际界面为准。
地域和可用区
华东1(杭州)
可用区J
实例所在的物理位置和可用区。
重要
实例创建后,无法更改地域和可用区,请谨慎选择。
专有网络
vpc_Hangzhou/vpc-bp1f4epmkvncimpgs****
专有网络是您在阿里云自己定义的一个隔离网络环境,您可以完全掌控自己的专有网络。
选择已有的专有网络,或者如需创建新的专有网络,可以单击前往控制台创建,详情请参见创建和管理专有网络。
交换机
vsw_i/vsw-bp1e2f5fhaplp0g6p****
交换机(vSwitch)是组成专有网络VPC的基础网络模块,用来连接不同的云资源。
选择已有的交换机,或者如需创建新的交换机,可以单击控制台创建,详情请参见创建和管理交换机。
服务关联角色
AliyunServiceRoleForCloudMilvus
已授予您的阿里云账号的AliyunServiceRoleForCloudMilvus角色,以及与其关联的AliyunServiceRolePolicyForMilvus策略。
Milvus使用此角色来访问您在其他云产品中的资源。
引擎版本
2.4
Milvus的社区版本号。
规格
入门版
Milvus实例的规格。
-
入门版:适用于测试环境,且资源规格固定。
选择该规格时,还需配置Standalone规格参数,该参数是入门版节点配置,可以使用默认的4 vCPU 16 GiB。
-
标准版:适用于生产环境,资源规格可以按需定制。
当您的向量数据规模超过500万,或者当前入门版的规格无法满足您的业务需求时,您可以填写阿里云向量检索Milvus标准版测试申请表申请试用。相较于入门版本,Milvus标准版提供了更大范围的实例规格选项和更加多样化的配置,您可以根据实际使用情况灵活选择最适合的实例规格。
选择该规格时,还需要配置以下参数:
-
MixCoordinator资源规格:IndexCoord、QueryCoord和DataCoord服务混合部署在该节点上。
-
MixCoordinator节点数量:默认为1,目前不支持HA。
-
Proxy资源规格:指定Proxy节点大小。
-
Proxy节点数量:指定Proxy节点副本数量。
-
Query Node资源规格:指定QueryNode节点大小。
-
Query Node节点数量:指定QueryNode节点副本数量。
-
Index Node资源规格:指定IndexNode节点大小。
-
Index Node节点数量:指定IndexNode节点副本数量。
-
Data Node资源规格:指定DataNode节点大小。
-
Data Node节点数量:指定DataNode节点副本数量。
-
存储费用
不涉及
您无需预先选择存储容量,存储成本将根据实际的小时使用量进行计费(公测期间免费),使用量将直接显示在实例详情页面。
资源组
请您自定义
选择已有的资源组,或者如需创建新的专用资源组,可以单击创建资源组。资源组会对您拥有的云资源从用途、权限和归属等维度进行分组,详情请参见资源组概述。
用户密码
请您自定义
设置Milvus实例的root账号密码以登录数据库。
重要
请牢记您设定的密码,目前无法更改。
-
-
单击立即购买。
当实例状态为运行中时,表示实例创建成功。
-
当所有的信息确认正确后,阅读并选中服务协议。
-
单击去支付,即可开通成功。
当实例状态为运行中时,表示实例创建成功。
-
操作流程
步骤一:连接Milvus实例
您可以使用以下代码连接Milvus实例。
from pymilvus import MilvusClient # 创建Milvus Client。 client = MilvusClient( uri="http://c-xxxx.milvus.aliyuncs.com:19530", # Milvus实例的公网地址。 token="<yourUsername>:<yourPassword>", # 登录Milvus实例的用户名和密码。 db_name="default" # 待连接的数据库名称,本文示例为默认的default。 )
步骤二:创建Collection
您可以通过以下代码简便地创建一个Collection。更多自定义参数选项,请参见管理Collections。
client.create_collection( collection_name="demo", #集合的名称。 dimension=5 #向量维度。 )
这段代码除了设置Collection名称和向量维度,还自动应用了以下配置:
-
使用默认命名的主键字段“id”和向量字段“vector”。
-
“metric_type”属性采用默认的COSINE度量类型。
-
主键字段“id”设定为整型,其值不会自动递增。
-
引入了额外的“$meta”字段,以键值对形式存储那些在Schema中未定义的字段数据。