Cokriging代理模型理论相关推导

Cokriging模型是20世纪70年代发展起来的一种地质统计学插值模型。在地质统计学领域,为了提高对某个抽样比较困难的量的预测精度,提出了采用更容易抽样的量进行辅助预测的Kriging模型,称为Cokriging模型,本文对Cokriging模型相关理论进行了推导。

2.1 代理模型问题的基本描述

对于一个有 m m m个设计变量的优化问题,在设计空间中同时进行高可信度分析和低可信度抽样,以建立所谓变可信度模型,变可信代理模型在达到相同近似精度的条件下,可以显著提高建立代理模型的效率。设高、低可信度分析程序的抽样位置分别为:
{ S 1 = [ x 1 ( 1 )    x 1 ( 2 )    …    x 1 ( n 1 ) ] T ∈ R n 1 × m S 2 = [ x 2 ( 1 )    x 2 ( 2 )    …    x 2 ( n 2 ) ] T ∈ R n 2 × m (1) \begin {cases} \mathbf S_1=[\mathbf x_1^{(1)} \ \ \mathbf x_1^{(2)} \ \ \ldots \ \ \mathbf x_1^{(n_1)}]^T\in\R^{n_1\times m} \\ \mathbf S_2=[\mathbf x_2^{(1)} \ \ \mathbf x_2^{(2)} \ \ \ldots \ \ \mathbf x_2^{(n_2)}]^T\in \R^{n_2 \times m} \end {cases} \tag{1} {S1=[x1(1)  x1(2)    x1(n1)]TRn1×mS2=[x2(1)  x2(2)    x2(n2)]TRn2×m(1)
上式中,下标 “1” 和 “2” 分别代表高、低可信度,例如 n 1 n_1 n1 n 2 n_2 n2 分别代表高、低可信度样本点数(可合理假设 n 2 ≫ n 1 n_2\gg n_1 n2n1 )。相应的目标函数或约束函数响应值为:
{ y 1 = [ y 1 ( 1 )    y 1 ( 2 )    …    y 1 ( n 1 ) ] T ∈ R n 1 y 2 = [ y 2 ( 1 )    y 2 ( 2 )    …    y 2 ( n 2 ) ] T ∈ R n 2 (2) \begin {cases} \mathbf y_1=[y_1^{(1)} \ \ y_1^{(2)} \ \ \ldots \ \ y_1^{(n_1)}]^T\in\R^{n_1} \\ \mathbf y_2=[y_2^{(1)} \ \ y_2^{(2)} \ \ \ldots \ \ y_2^{(n_2)}]^T\in\R^{n_2} \end {cases} \tag{2} {y1=[y1(1)  y1(2)    y1(n1)]TRn1y2=[y2(1)  y2(2)    y2(n2)]TRn2(2)
结合高可信度数据集 ( S 1 , y 1 ) (\mathbf S_1, \mathbf y_1) (S1,y1) 和低可信度数据 ( S 1 , y 2 ) (\mathbf S_1,\mathbf y_2) (S1,y2) 可以建立 Cokriging 模型。

2.2 Cokriging 模型及其预估值

Cokriging 模型预估值定义为:
y ^ 1 ( x ) = λ T y s = λ 1 T y 1 + λ 2 T y 2 (3) \hat y_1 (\mathbf x)= \boldsymbol \lambda^T\mathbf y_s=\boldsymbol \lambda_1^T\mathbf y_1+\boldsymbol \lambda_2^T\mathbf y_2 \tag{3} y^1(x)=λTys=λ1Ty1+λ2Ty2(3)
上式中: λ 1 \boldsymbol \lambda_1 λ1 λ 2 \boldsymbol \lambda _2 λ2 分别为对高低可信度响应值的加权系数,只要给出加权系数 λ 1 = [ λ 1 ( 1 )    λ 1 ( 2 )    …    λ 1 n 1 ] \boldsymbol \lambda_1 = [\lambda_1^{(1)} \ \ \lambda_1^{(2)} \ \ \ldots \ \ \lambda_1^{n_1}] λ1=[λ1(1)  λ1(2)    λ1n1] λ 2 = [ λ 2 ( 1 )    λ 2 ( 2 )    …    λ 2 ( n 2 ) ] \boldsymbol\lambda_2 = [\lambda_2^{(1)} \ \ \lambda_2^{(2)} \ \ \ldots \ \ \lambda_2^{(n_2)}] λ2=[λ2(1)  λ2(2)    λ2(n2)] ,就可以得到设计空间中任意点的响应值。为了计算这两个加权系数,引入统计学假设,假设存在分别与 y 1 y_1 y1 y 2 y_2 y2 对应的两个高斯静态随机过程:
{ Y 1 ( x ) = β 1 + Z 1 ( x ) Y 2 ( x ) = β 2 + Z 2 ( x ) (4) \begin {cases} Y_1{(\mathbf x)} =\beta_1+ Z_1(\mathbf x) \\ Y_2(\mathbf x)=\beta_2+ Z_2(\mathbf x)\end {cases} \tag {4} {Y1(x)=β1+Z1(x)Y2(x)=β2+Z2(x)(4)
上式中, β 1 \beta_1 β1 β 2 \beta_2 β2 均为未知常数,也称为全局趋势模型,它们分别代表 Y 1 ( x ) Y_1(\mathbf x) Y1(x) Y 2 ( x ) Y_2(\mathbf x) Y2(x) 的数学期望值; Z 1 ( ⋅ ) Z_1(\cdot) Z1() Z 2 ( ⋅ ) Z_2(\cdot) Z2() 是均值为0,方差分别为 σ 1 2 \sigma _1^2 σ12 σ 2 2 \sigma_2^2 σ22 的静态随机过程。在设计空间不同位置处,随机变量之间的协方差和交叉协方差定义为:
{ C o v ( Z ( x 1 ( i ) ) , Z ( x 1 ( j ) ) ) = σ 1 2 R ( 11 ) ( x 1 ( i ) , x 1 ( j ) ) C o v ( Z ( x 2 ( i ) ) , Z ( x 2 ( j ) ) ) = σ 2 2 R ( 22 ) ( x 2 ( i ) , x 2 ( j ) ) C o v ( Z ( x 1 ( i ) ) , Z ( x 2 ( j ) ) ) = σ 1 σ 2 R ( 12 ) ( x 1 ( i ) , x 2 ( j ) ) (5) \begin {cases} Cov(Z(\mathbf x_1^{(i)}),Z(\mathbf x_1^{(j)}))=\sigma_1^2R^{(11)}(\mathbf x_1^{(i)},\mathbf x_1^{(j)}) \\ Cov(Z(\mathbf x_2^{(i)}),Z(\mathbf x_2^{(j)}))=\sigma_2^2 R^{(22)} (\mathbf x_2^{(i)},\mathbf x_2^{(j)}) \\ Cov(Z(\mathbf x_1^{(i)}),Z(\mathbf x_2^{(j)}))=\sigma_1\sigma_2R^{(12)}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}) \end {cases} \tag{5} Cov(Z(x1(i)),Z(x1(j)))=σ12R(11)(x1(i),x1(j))Cov(Z(x2(i)),Z(x2(j)))=σ22R(22)(x2(i),x2(j))Cov(Z(x1(i)),Z(x2(j)))=σ1σ2R(12)(x1(i),x2(j))(5)
上式中, σ 1 2 \sigma_1^2 σ12 σ 2 2 \sigma _2^2 σ22 分别为随机过程 Y 1 ( x ) Y_1(\mathbf x) Y1(x) Y 2 ( x ) Y_2(\mathbf x) Y2(x) 的过程方差。

基于上述假设,Cokriging 模型寻找最优加权系数 λ 1 \boldsymbol \lambda_1 λ1 λ 2 \boldsymbol \lambda_2 λ2 使得均方差:
M S E ( y ^ 1 ( x ) ) = E [ ( λ 1 T Y 1 + λ 2 T Y 2 − Y 1 ( x ) ) 2 ] (6) MSE(\hat y_1(\mathbf x))=E[(\boldsymbol \lambda_1^T\mathbf Y_1+\boldsymbol \lambda_2^T \mathbf Y_2- Y_1(\mathbf x))^2] \tag{6} MSE(y^1(x))=E[(λ1TY1+λ2TY2Y1(x))2](6)
最小,并引入无偏估计:
E [ λ 1 T Y 1 + λ 2 T Y 2 ] = E [ Y 1 ] (7) E[\boldsymbol \lambda_1^T\mathbf Y_1+\boldsymbol \lambda_2^T\mathbf Y_2]=E[Y_1] \tag{7} E[λ1TY1+λ2TY2]=E[Y1](7)
无偏估计化简得:
β 1 ( ∑ i = 1 n 1 λ 1 ( i ) − 1 ) + β 2 ∑ j = 1 n 2 λ 2 ( j ) = 0 (8) \beta_1(\sum_{i=1}^{n_1}\lambda_1^{(i)}-1)+\beta_2\sum_{j=1}^{n_2}\lambda_2^{(j)}=0 \tag{8} β1(i=1n1λ1(i)1)+β2j=1n2λ2(j)=0(8)
为了让无偏估计条件不依赖于 β 1 \beta_1 β1 β 2 \beta_2 β2 的取值,取如下更强一些的无偏估计条件:
∑ i = 1 n 1 λ 1 ( i ) − 1 = 0 ,    ∑ i = 1 n 2 λ 2 ( i ) = 0 (9) \sum_{i=1}^{n_1}\lambda_1^{(i)}-1=0,\ \ \sum_{i=1}^{n_2}\lambda_2^{(i)}=0 \tag{9} i=1n1λ1(i)1=0,  i=1n2λ2(i)=0(9)

采用拉格朗日乘数法,令:
L ( λ 1 , λ 2 , μ 1 , μ 2 ) = E [ ( λ 1 T Y 1 + λ 2 T Y 2 − Y 1 ( x ) ) 2 ] + μ 1 ( ∑ i = 1 n 1 λ 1 ( i ) − 1 ) + μ 2 ∑ j = 1 n 2 λ 2 ( j ) (10) L(\boldsymbol\lambda_1,\boldsymbol \lambda_2,\mu_1,\mu_2)=E[(\boldsymbol \lambda_1^T\mathbf Y_1+\boldsymbol \lambda_2^T\mathbf Y_2-Y_1(\mathbf x))^2] + \mu_1(\sum_{i=1}^{n_1}\lambda_1^{(i)}-1)+\mu_2\sum_{j=1}^{n_2}\lambda_2^{(j)} \tag{10} L(λ1,λ2,μ1,μ2)=E[(λ1TY1+λ2TY2Y1(x))2]+μ1(i=1n1λ1(i)1)+μ2j=1n2λ2(j)(10)
令:
{ ∂ L ( λ 1 , λ 2 , μ 1 , μ 2 ) ∂ λ 1 ( i ) = E [ 2 ( λ 1 T Y 1 + λ 2 T Y 2 − Y 1 ( x ) ) ∗ Y 1 ( x 1 ( i ) ) ] + μ 1 = 0 ∂ L ( λ 1 , λ 2 , μ 1 , μ 2 ) ∂ λ 2 ( i ) = E [ 2 ( λ 1 T Y 1 + λ 2 T Y 2 − Y 1 ( x ) ) ∗ Y 2 ( x 2 ( i ) ) ] + μ 2 = 0 ∂ L ( λ 1 , λ 2 , μ 1 , μ 2 ) ∂ μ 1 = ∑ i = 1 n 1 λ 1 ( i ) − 1 = 0 ∂ L ( λ 1 , λ 2 , μ 1 , μ 2 ) ∂ μ 2 = ∑ i = 1 n 2 λ 2 ( i ) = 0 (11) \begin {cases}\frac {\partial L(\boldsymbol \lambda_1,\boldsymbol \lambda_2,\mu_1,\mu_2)}{\partial \lambda_1^{(i)}}= E[2(\boldsymbol \lambda_1^T\mathbf Y_1+\boldsymbol \lambda_2^T\mathbf Y_2-Y_1(\mathbf x))*Y_1(\mathbf x_1^{(i)})] +\mu_1= 0 \\ \frac {\partial L(\boldsymbol \lambda_1,\boldsymbol \lambda_2,\mu_1,\mu_2)}{\partial \lambda_2^{(i)}}=E[2(\boldsymbol \lambda_1^T\mathbf Y_1+\boldsymbol\lambda_2^T\mathbf Y_2-Y_1(\mathbf x))*Y_2(\mathbf x_2^{(i)})]+\mu_2=0 \\ \frac{\partial L(\boldsymbol\lambda_1,\boldsymbol \lambda_2,\mu_1,\mu_2)}{\partial\mu_1}= \sum_{i=1}^{n_1}\lambda_1^{(i)}-1 =0 \\ \frac {\partial L(\boldsymbol \lambda_1,\boldsymbol \lambda_2,\mu_1,\mu_2)}{\partial \mu_2}=\sum_{i=1}^{n_2}\lambda_2^{(i)}=0 \end {cases} \tag{11} λ1(i)L(λ1,λ2,μ1,μ2)=E[2(λ1TY1+λ2TY2Y1(x))Y1(x1(i))]+μ1=0λ2(i)L(λ1,λ2,μ1,μ2)=E[2(λ1TY1+λ2TY2Y1(x))Y2(x2(i))]+μ2=0μ1L(λ1,λ2,μ1,μ2)=i=1n1λ1(i)1=0μ2L(λ1,λ2,μ1,μ2)=i=1n2λ2(i)=0(11)
以式 (9) 中第一行式子为例演示展开过程:
∂ L ( λ 1 , λ 2 , μ 1 , μ 2 ) ∂ λ 1 ( i ) = 2 E [ ( ∑ j = 1 n 1 λ 1 ( j ) Y 1 ( x 1 ( j ) ) ) ⋅ Y 1 ( x 1 ( i ) ) ] + 2 E [ ( ∑ j = 1 n 2 λ 2 ( j ) Y 2 ( x 2 ( j ) ) ) ⋅ Y 1 ( x 1 ( i ) ) ] − 2 E [ Y 1 ( x 1 ) ⋅ Y 1 ( x 1 ( i ) ) ] + μ 1 = 2 ∑ j = 1 n 1 λ 1 ( j ) ( β 1 2 + σ 1 2 R 11 ( x 1 ( i ) , x 1 ( j ) ) ) + 2 ∑ j = 1 n 2 λ 2 ( j ) ( β 1 β 2 + σ 1 σ 2 R 12 ( x 1 ( i ) , x 2 ( j ) ) ) − 2 ( β 1 2 + σ 1 2 R ( x 1 ( i ) , x 1 ) ) + μ 1 = 2 ( ∑ j = 1 n 1 λ 1 ( j ) − 1 ) β 1 2 + 2 σ 1 2 ( ∑ j = 1 n 1 λ 1 ( j ) R ( x 1 ( i ) , x 1 ( j ) ) ) + 2 β 1 β 2 ∑ j = 1 n 2 λ 2 ( j ) + 2 σ 1 σ 2 ( ∑ j = 1 n 2 λ 2 ( j ) R 12 ( x 1 ( i ) , x 2 ( j ) ) ) − 2 σ 1 2 R 11 ( x 1 , x 1 ( i ) ) + μ 1 = − 2 β 1 ( ∑ j = 1 n 2 λ 2 ( j ) β 2 ) + 2 σ 1 2 ( ∑ j = 1 n 1 λ 1 ( j ) R ( x 1 ( i ) , x 1 ( j ) ) ) + 2 β 1 β 2 ∑ j = 1 n 2 λ 2 ( j ) + 2 σ 1 σ 2 ( ∑ j = 1 n 2 λ 2 ( j ) R 12 ( x 1 ( i ) , x 2 ( j ) ) ) − 2 σ 1 2 R 11 ( x 1 , x 1 ( i ) ) + μ 1 = 2 σ 1 2 ( ∑ j = 1 n 1 λ 1 ( j ) R ( x 1 ( i ) , x 1 ( j ) ) + 2 σ 1 σ 2 ( ∑ j = 1 n 2 λ 2 ( j ) R 12 ( x 1 ( i ) , x 2 ( j ) ) ) − 2 σ 1 2 R 11 ( x 1 , x 1 ( i ) ) + μ 1 (12) \begin {align} \frac {\partial {L(\boldsymbol \lambda_1,\boldsymbol \lambda_2,\mu_1,\mu_2)}}{\partial \lambda_1^{(i)}} &= 2E[(\sum_{j=1}^{n_1}\lambda_1^{(j)} Y_1(\mathbf x_1^{(j)}))\cdot Y_1(\mathbf x_1^{(i)})]+2E[(\sum_{j=1}^{n_2}\lambda_2^{(j)}Y_2(\mathbf x_2^{(j)})) \cdot Y_1(\mathbf x_1^{(i)})]-2E[Y_1(\mathbf x_1)\cdot Y_1(\mathbf x_1^{(i)})] + \mu_1 \\ &= 2\sum_{j=1}^{n_1}\lambda_1^{(j)}(\beta_1^2+\sigma_1^2R^{11}(\mathbf x_1^{(i)},\mathbf x_1^{(j)}))+2\sum_{j=1}^{n_2}\lambda_2^{(j)}(\beta_1\beta_2+\sigma_1\sigma_2R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))-2(\beta_1^2+\sigma_1^2R(\mathbf x_1^{(i)},\mathbf x_1))+\mu_1 \\ & =2(\sum_{j=1}^{n_1}\lambda_1^{(j)}-1)\beta_1^2+2\sigma_1^2(\sum_{j=1}^{n_1}\lambda_1^{(j)}R(\mathbf x_1^{(i)},\mathbf x_1^{(j)}))+2\beta_1\beta_2\sum_{j=1}^{n_2}\lambda_2^{(j)} +2\sigma_1\sigma_2(\sum_{j=1}^{n_2} \lambda_2^{(j)}R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))-2\sigma_1^2R^{11}(\mathbf x_1,\mathbf x_1^{(i)})+\mu_1 \\ &=-2\beta_1(\sum_{j=1}^{n_2}\lambda_2^{(j)}\beta_2)+2\sigma_1^2(\sum_{j=1}^{n_1}\lambda_1^{(j)}R(\mathbf x_1^{(i)},\mathbf x_1^{(j)}))+2\beta_1\beta_2\sum_{j=1}^{n_2}\lambda_2^{(j)}+ 2\sigma_1\sigma_2(\sum_{j=1}^{n_2}\lambda _2^{(j)}R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))-2\sigma_1^2R^{11}(\mathbf x_1,\mathbf x_1^{(i)})+ \mu_1 \\ &= 2\sigma_1^2(\sum_{j=1}^{n_1}\lambda_1^{(j)}R(\mathbf x_1^{(i)},\mathbf x_1^{(j)})+2\sigma_1\sigma_2(\sum_{j=1}^{n_2}\lambda _2^{(j)}R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))-2\sigma_1^2R^{11}(\mathbf x_1,\mathbf x_1^{(i)}) +\mu_1 \end {align} \tag{12} λ1(i)L(λ1,λ2,μ1,μ2)=2E[(j=1n1λ1(j)Y1(x1(j)))Y1(x1(i))]+2E[(j=1n2λ2(j)Y2(x2(j)))Y1(x1(i))]2E[Y1(x1)Y1(x1(i))]+μ1=2j=1n1λ1(j)(β12+σ12R11(x1(i),x1(j)))+2j=1n2λ2(j)(β1β2+σ1σ2R12(x1(i),x2(j)))2(β12+σ12R(x1(i),x1))+μ1=2(j=1n1λ1(j)1)β12+2σ12(j=1n1λ1(j)R(x1(i),x1(j)))+2β1β2j=1n2λ2(j)+2σ1σ2(j=1n2λ2(j)R12(x1(i),x2(j)))2σ12R11(x1,x1(i))+μ1=2β1(j=1n2λ2(j)β2)+2σ12(j=1n1λ1(j)R(x1(i),x1(j)))+2β1β2j=1n2λ2(j)+2σ1σ2(j=1n2λ2(j)R12(x1(i),x2(j)))2σ12R11(x1,x1(i))+μ1=2σ12(j=1n1λ1(j)R(x1(i),x1(j))+2σ1σ2(j=1n2λ2(j)R12(x1(i),x2(j)))2σ12R11(x1,x1(i))+μ1(12)
同样的过程可以展开式(9)中第二行式子得:
∂ L ( λ 1 , λ 2 , μ 1 , μ 2 ) ∂ λ 2 ( i ) = 2 σ 1 σ 2 ( ∑ j = 1 n 1 λ 1 ( j ) R 12 ( x 1 ( j ) , x 2 ( i ) ) ) + 2 σ 2 2 ( ∑ j = 1 n 2 λ 2 ( j ) R 22 ( x 2 ( i ) , x 2 ( j ) ) ) − 2 σ 1 σ 2 R 12 ( x 1 , x 2 ( i ) ) + μ 2 (13) \frac {\partial L(\boldsymbol\lambda_1,\boldsymbol\lambda_2,\mu_1,\mu_2)}{\partial \lambda_2^{(i)}}=2\sigma_1\sigma_2(\sum_{j=1}^{n_1}\lambda_1^{(j)}R^{12}(\mathbf x_1^{(j)},\mathbf x_2^{(i)}))+2\sigma_2^2(\sum_{j=1}^{n_2}\lambda_2^{(j)}R^{22}(\mathbf x_2^{(i)},\mathbf x_2^{(j)}))-2\sigma_1\sigma_2R^{12}(\mathbf x_1,\mathbf x_2^{(i)})+\mu_2 \tag{13} λ2(i)L(λ1,λ2,μ1,μ2)=2σ1σ2(j=1n1λ1(j)R12(x1(j),x2(i)))+2σ22(j=1n2λ2(j)R22(x2(i),x2(j)))2σ1σ2R12(x1,x2(i))+μ2(13)
则式 (9) 简化如下:
{ 2 σ 1 2 ( ∑ j = 1 n 1 λ 1 ( j ) R ( x 1 ( i ) , x 1 ( j ) ) + 2 σ 1 σ 2 ( ∑ j = 1 n 2 λ 2 ( j ) R 12 ( x 1 ( i ) , x 2 ( j ) ) ) − 2 σ 1 2 R 11 ( x 1 , x 1 ( i ) ) + μ 1 = 0 2 σ 1 σ 2 ( ∑ j = 1 n 1 λ 1 ( j ) R 12 ( x 1 ( j ) , x 2 ( i ) ) ) + 2 σ 2 2 ( ∑ j = 1 n 2 λ 2 ( j ) R 22 ( x 2 ( i ) , x 2 ( j ) ) ) − 2 σ 1 σ 2 R 12 ( x 1 , x 2 ( i ) ) + μ 2 = 0 ∑ i = 1 n 1 λ 1 ( i ) − 1 = 0 ∑ i = 1 n 2 λ 2 ( i ) = 0 (14) \begin {cases}2\sigma_1^2(\sum_{j=1}^{n_1}\lambda_1^{(j)}R(\mathbf x_1^{(i)},\mathbf x_1^{(j)})+2\sigma_1\sigma_2(\sum_{j=1}^{n_2}\lambda_2^{(j)}R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))-2\sigma_1^2R^{11}(\mathbf x_1,\mathbf x_1^{(i)}) +\mu_1=0 \\ 2\sigma_1\sigma_2(\sum_{j=1}^{n_1}\lambda_1^{(j)}R^{12}(\mathbf x_1^{(j)},\mathbf x_2^{(i)}))+2\sigma_2^2(\sum_{j=1}^{n_2}\lambda_2^{(j)}R^{22}(\mathbf x_2^{(i)},\mathbf x_2^{(j)}))-2\sigma_1\sigma_2R^{12}(\mathbf x_1,\mathbf x_2^{(i)})+\mu_2=0 \\ \sum_{i=1}^{n_1}\lambda_1^{(i)}-1 =0 \\ \sum_{i=1}^{n_2} \lambda_2^{(i)}=0 \end{cases} \tag{14} 2σ12(j=1n1λ1(j)R(x1(i),x1(j))+2σ1σ2(j=1n2λ2(j)R12(x1(i),x2(j)))2σ12R11(x1,x1(i))+μ1=02σ1σ2(j=1n1λ1(j)R12(x1(j),x2(i)))+2σ22(j=1n2λ2(j)R22(x2(i),x2(j)))2σ1σ2R12(x1,x2(i))+μ2=0i=1n1λ1(i)1=0i=1n2λ2(i)=0(14)
改写为矩阵形式有:
[ C ( 11 ) C ( 12 ) F 1 0 C ( 21 ) C ( 22 ) 0 F 2 F 1 T 0 T 0 0 0 T F 2 T 0 0 ] [ λ 1 λ 2 μ 1 / 2 μ 2 / 2 ] = [ c 1 c 2 1 0 ] (13) \begin {bmatrix} \mathbf C^{(11)} & \mathbf C^{(12)} & \mathbf F_1 & \mathbf 0 \\ \mathbf C^{(21)} & \mathbf C^{(22)} & \mathbf 0 & \mathbf F_2 \\ \mathbf F_1^T & \mathbf 0^T & 0 &0 \\ \mathbf 0^T & \mathbf F_2^T & 0 & 0\end {bmatrix} \begin{bmatrix} \boldsymbol\lambda_1 \\ \boldsymbol \lambda_2 \\ \mu_1/2 \\ \mu_2/2 \end {bmatrix} =\begin {bmatrix} \mathbf c_1 \\ \mathbf c_2 \\1 \\0 \end {bmatrix} \tag{13} C(11)C(21)F1T0TC(12)C(22)0TF2TF10000F200 λ1λ2μ1/2μ2/2 = c1c210 (13)
上式中:
C ( 11 ) = ( σ 1 2 R 11 ( x 1 ( i ) , x 1 ( j ) ) ) i , j ∈ R n 1 × n 1 C ( 12 ) = ( σ 1 σ 2 R 12 ( x 1 ( i ) , x 2 ( j ) ) ) i , j = ( C ( 21 ) ) T ∈ R n 1 × n 2 C ( 22 ) = ( σ 2 2 R 22 ( x 2 ( i ) , x 2 ( j ) ) ) i , j ∈ R n 2 × n 2 c 1 = ( σ 1 2 R 11 ( x 1 ( i ) , x 1 ) ) i ∈ R n 1 c 2 = ( σ 1 σ 2 R 12 ( x 2 ( i ) , x 1 ) ) i ∈ R n 2 F 1 = [ 1    1    …    1 ] i T , i ∈ [ 1 , n 1 ] F 2 = [ 1    1    …    1 ] i T , i ∈ [ 1 , n 2 ] (14) \begin {align} &\mathbf C^{(11)}=(\sigma_1^2R^{11}(\mathbf x_1^{(i)},\mathbf x_1^{(j)}))_{i,j} \in\R^{n_1\times n_1} \\ & \mathbf C^{(12)}=(\sigma_1\sigma_2R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))_{i,j}=(\mathbf C^{(21)})^T \in \R^{n_1 \times n_2} \\ &\mathbf C^{(22)}=(\sigma_2^2R^{22}(\mathbf x_2^{(i)},\mathbf x_2^{(j)}))_{i,j} \in \R^{n_2\times n_2} \\ & \mathbf c_1=(\sigma_1^2R^{11}(\mathbf x_1^{(i)},\mathbf x_1))_i \in\R^{n_1} \\ & \mathbf c_2=(\sigma_1\sigma_2R^{12}(\mathbf x_2^{(i)},\mathbf x_1))_i \in \R^{n_2} \\ & \mathbf F_1=[1 \ \ 1 \ \ \ldots \ \ 1]^T_i,i\in[1,n_1] \\ & \mathbf F_2=[1 \ \ 1 \ \ \ldots \ \ 1]^T_i,i\in[1,n_2] \end {align} \tag{14} C(11)=(σ12R11(x1(i),x1(j)))i,jRn1×n1C(12)=(σ1σ2R12(x1(i),x2(j)))i,j=(C(21))TRn1×n2C(22)=(σ22R22(x2(i),x2(j)))i,jRn2×n2c1=(σ12R11(x1(i),x1))iRn1c2=(σ1σ2R12(x2(i),x1))iRn2F1=[1  1    1]iT,i[1,n1]F2=[1  1    1]iT,i[1,n2](14)
为了在让 σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2 在式(13)中消去,设:
λ ~ 1 = λ 1 ,    λ ~ 2 = σ 2 σ 1 λ 2 μ ~ 1 = μ 1 / ( 2 σ 1 2 ) ,    μ ~ 2 = μ 2 / ( 2 σ 1 σ 2 ) (15) \begin {align} &\widetilde {\boldsymbol \lambda}_1=\boldsymbol \lambda_1, \ \ \widetilde {\boldsymbol \lambda}_2=\frac {\sigma_2}{\sigma_1}\boldsymbol\lambda_2 \\ &\widetilde \mu_1=\mu_1/(2\sigma_1^2), \ \ \widetilde {\mu}_2=\mu_2/(2\sigma_1\sigma_2) \end {align} \tag{15} λ 1=λ1,  λ 2=σ1σ2λ2μ 1=μ1/(2σ12),  μ 2=μ2/(2σ1σ2)(15)
则式(13)化为:
[ R ( 11 ) R ( 12 ) F 1 0 R ( 21 ) R ( 22 ) 0 F 2 F 1 T 0 T 0 0 0 T F 2 T 0 0 ] [ λ ~ 1 λ ~ 2 μ ~ 1 μ ~ 2 ] = [ r 1 ( x ) r 2 ( x ) 1 0 ] (16) \begin {bmatrix} \mathbf R^{(11)} & \mathbf R^{(12)} & \mathbf F_1 & \mathbf 0 \\ \mathbf R^{(21)} & \mathbf R^{(22)} & \mathbf 0 & \mathbf F_2 \\ \mathbf F_1^T & \mathbf 0^T & 0 & 0 \\ \mathbf 0^T & \mathbf F_2^T & 0 & 0 \end {bmatrix} \begin {bmatrix} \widetilde {\boldsymbol \lambda}_1 \\ \widetilde {\boldsymbol \lambda}_2 \\ \widetilde \mu_1 \\ \widetilde \mu_2 \end {bmatrix}=\begin {bmatrix} \mathbf r_1(\mathbf x) \\ \mathbf r_2(\mathbf x) \\ 1 \\ 0 \end {bmatrix} \tag{16} R(11)R(21)F1T0TR(12)R(22)0TF2TF10000F200 λ 1λ 2μ 1μ 2 = r1(x)r2(x)10 (16)
上式中:
R ( 11 ) = ( R 11 ( x 1 ( i ) , x 1 ( j ) ) ) i , j ∈ R n 1 × n 1 R ( 12 ) = ( R 12 ( x 1 ( i ) , x 2 ( j ) ) ) i , j = R ( 21 ) ) T ∈ R n 1 × n 2 R ( 22 ) = ( R 22 ( x 2 ( i ) , x 2 ( j ) ) ) i , j ∈ R n 2 × n 2 r 1 ( x ) = ( R 11 ( x 1 , x 1 ( i ) ) ) i ∈ R n 1 r 2 ( x ) = ( R 12 ( x 1 , x 2 ( i ) ) ) i ∈ R n 2 (17) \begin {align} & \mathbf R^{(11)} = (R^{11}(\mathbf x_1^{(i)},\mathbf x_1^{(j)}))_{i,j}\in\R^{n_1 \times n_1} \\ & \mathbf R^{(12)} =(R^{12}(\mathbf x_1^{(i)},\mathbf x_2^{(j)}))_{i,j}=\mathbf R^{(21)})^T \in\R^{n_1 \times n_2} \\ & \mathbf R^{(22)} =(R^{22}(\mathbf x_2^{(i)},\mathbf x_2^{(j)}))_{i,j}\in\R^{n_2 \times n_2} \\ & \mathbf r_1(\mathbf x)=\mathbf (R^{11}(\mathbf x_1,\mathbf x_1^{(i)}))_i \in \R^{n_1} \\ & \mathbf r_2(\mathbf x)=(R^{12}(\mathbf x_1,\mathbf x_2^{(i)}))_i\in\R^{n_2} \end {align} \tag{17} R(11)=(R11(x1(i),x1(j)))i,jRn1×n1R(12)=(R12(x1(i),x2(j)))i,j=R(21))TRn1×n2R(22)=(R22(x2(i),x2(j)))i,jRn2×n2r1(x)=(R11(x1,x1(i)))iRn1r2(x)=(R12(x1,x2(i)))iRn2(17)
则 Cokriging 模型表达式:
y ^ ( x ) = λ ~ 1 T Y 1 , s + σ 1 σ 2 λ ~ 2 Y 2 , s = [ λ ~ 1 λ ~ 2 ] [ y 1 , s σ 1 σ 2 y 2 , s ] (18) \hat y(\mathbf x) = \widetilde {\boldsymbol \lambda}_1^T\mathbf Y_{1,s}+\frac {\sigma_1}{\sigma_2}\widetilde {\boldsymbol \lambda}_2\mathbf Y_{2,s}=\begin {bmatrix} \widetilde{\boldsymbol \lambda}_1 & \widetilde {\boldsymbol \lambda}_2 \end {bmatrix} \begin{bmatrix} \mathbf y_{1,s} \\ \frac {\sigma_1}{\sigma_2}\mathbf y_{2,s} \end {bmatrix} \tag{18} y^(x)=λ 1TY1,s+σ2σ1λ 2Y2,s=[λ 1λ 2][y1,sσ2σ1y2,s](18)
结合式(16),则其矩阵形式为:
y ^ 1 ( x ) = [ r 1 ( x ) r 2 ( x ) 1 0 ] T [ R ( 11 ) R ( 12 ) F 1 0 R ( 21 ) R ( 22 ) 0 F 2 F 1 T 0 T 0 0 0 T F 2 T 0 0 ] − 1 [ y 1 , s σ 1 σ 2 y 2 , s 0 0 ] (19) \hat y_1(\mathbf x)=\begin {bmatrix} \mathbf r_1(\mathbf x) \\ \mathbf r_2(\mathbf x) \\ 1 \\0 \end {bmatrix}^T \begin {bmatrix}\mathbf R^{(11)} & \mathbf R^{(12)} & \mathbf F_1 & \mathbf 0 \\ \mathbf R^{(21)} & \mathbf R^{(22)} & \mathbf 0 & \mathbf F_2 \\ \mathbf F_1^T & \mathbf 0^T &0 &0 \\ \mathbf 0^T &\mathbf F_2^T & 0 & 0 \end {bmatrix}^{-1} \begin {bmatrix} \mathbf y_{1,s} \\ \frac {\sigma_1}{\sigma_2}\mathbf y_{2,s} \\ 0 \\ 0 \end {bmatrix} \tag{19} y^1(x)= r1(x)r2(x)10 T R(11)R(21)F1T0TR(12)R(22)0TF2TF10000F200 1 y1,sσ2σ1y2,s00 (19)
参考 Kriging 模型推导过程,可得 Cokriging 模型表达式如下:
y ^ 1 ( x ) = φ β ~ + r ( x ) R − 1 ( y ~ s − F β ~ ) (20) \hat y_1(\mathbf x)= \boldsymbol \varphi\widetilde {\boldsymbol\beta}+\mathbf r(\mathbf x)\mathbf R^{-1}(\widetilde {\mathbf y}_s-\mathbf F\widetilde{\boldsymbol \beta}) \tag {20} y^1(x)=φβ +r(x)R1(y sFβ )(20)
上式中:
φ = [ 1 0 ] ,    β ~ = [ β ~ 1 β ~ 2 ] = ( F T R − 1 F ) − 1 F T R − 1 y ~ s , r = [ r 1 ( x ) r 2 ( x ) ] ,    R = [ R ( 11 ) R ( 12 ) R ( 21 ) R ( 22 ) ] , y ~ s = [ y 1 σ 1 σ 2 y 2 ] ,    F ~ = [ F 1 0 0 F 2 ] (21) \begin {align} &\boldsymbol \varphi = \begin {bmatrix}1 \\ 0 \end {bmatrix}, \ \ \widetilde {\boldsymbol\beta}=\begin {bmatrix} \widetilde\beta_1 \\ \widetilde\beta_2 \end {bmatrix}=(\mathbf F^T\mathbf R^{-1}\mathbf F)^{-1}\mathbf F^T\mathbf R^{-1}\widetilde {\mathbf y}_s, \\ &\mathbf r=\begin {bmatrix} \mathbf r_1(\mathbf x) \\ \mathbf r_2(\mathbf x) \end {bmatrix} , \ \ \mathbf R=\begin {bmatrix} \mathbf R^{(11)} & \mathbf R^{(12)} \\ \mathbf R^{(21)} & \mathbf R^{(22)}\end {bmatrix}, \\ & \widetilde {\mathbf y}_s=\begin {bmatrix}\mathbf y_1 \\ \frac{\sigma_1}{\sigma_2} \mathbf y_2 \end {bmatrix}, \ \ \widetilde {\mathbf F}= \begin {bmatrix} \mathbf F_1 & \mathbf 0 \\ \mathbf 0 & \mathbf F_2\end {bmatrix} \end {align} \tag{21} φ=[10],  β =[β 1β 2]=(FTR1F)1FTR1y s,r=[r1(x)r2(x)],  R=[R(11)R(21)R(12)R(22)],y s=[y1σ2σ1y2],  F =[F100F2](21)
在式(20)中,令 v c o k = R − 1 ( y ~ s − F β ~ ) v_{cok}=\mathbf R^{-1}(\widetilde {\mathbf y}_s-\mathbf F\widetilde {\boldsymbol \beta}) vcok=R1(y sFβ ) ,那么 φ β ~ \boldsymbol \varphi \widetilde \beta φβ v c o k v_{cok} vcok 只与已知样本点有关,已未知点无关,可以在模型训练结束后一次性计算并存储。之后,预测任意 x \mathbf x x 处的响应值只需要计算 r ( x ) \mathbf r(\mathbf x) r(x) V k r i g \mathbf V_{krig} Vkrig 间的点乘。

同理得到均方差为:
M S E [ y ^ 1 ( x ) ] = σ 1 2 [ 1.0 − r T R − 1 r + ( r T R − 1 F ~ − φ ) ( F ~ T R − 1 F ) − 1 ( r T R − 1 F ~ − φ ) T ] (22) MSE[\hat y_1(\mathbf x)]=\sigma_1^2[1.0-\mathbf r^T\mathbf R^{-1}\mathbf r+(\mathbf r^T\mathbf R^{-1}\widetilde {\mathbf F} - \boldsymbol \varphi)(\widetilde {\mathbf F}^T\mathbf R^{-1}\mathbf F)^{-1}(\mathbf r^T\mathbf R^{-1}\widetilde {\mathbf F}-\boldsymbol\varphi)^T] \tag{22} MSE[y^1(x)]=σ12[1.0rTR1r+(rTR1F φ)(F TR1F)1(rTR1F φ)T](22)

2.3 相关函数

在式 CoKriging模型表达式中,相关矩阵 R \mathbf R R 和相关矢量 $\mathbf r $ 构造涉及相关函数的选择和计算,这一过程与 Kriging 模型建立过程是类似的。下表为常用的相关函数:

相关函数 R ( x − x ′ ) \mathbf R(\mathbf x - \mathbf x') R(xx)
Exponential function R ( x , x ′ ) = e x p { − ∑ i = 1 m θ i / ∣ x i − x i ′ ∣ } \mathbf R(\mathbf x , \mathbf x')=exp\{-\sum_{i=1}^m\theta_i/ \lvert {x_i -x_i'} \rvert \} R(x,x)=exp{i=1mθi/xixi∣}
Power function R ( x , x ′ ) = e x p { − ∑ i = 1 m θ i / ( x i − x i ′ ) 2 } \mathbf R(\mathbf x , \mathbf x')=exp\{-\sum_{i=1}^m\theta_i/(x_i-x_i')^2\} R(x,x)=exp{i=1mθi/(xixi)2}
Gaussian function R ( x , x ′ ) = e x p { − ∑ i = 1 m θ i ( x i − x i ′ ) p i } \mathbf R(\mathbf x , \mathbf x')=exp\{-\sum_{i=1}^m\theta_i(x_i-x_i')^{p_i}\} R(x,x)=exp{i=1mθi(xixi)pi}
Linear function R ( x , x ′ ) = m a x { 0 , 1 − ∑ i = 1 m θ i / ∣ x i − x i ′ ∣ } \mathbf R(\mathbf x , \mathbf x')=max\{0,1-\sum_{i=1}^m\theta_i/ \lvert x_i-x_i' \rvert \} R(x,x)=max{0,1i=1mθi/xixi∣}
Ball function R ( x , x ′ ) = 1 − 1.5 ζ + 0.5 ζ 3 , ζ = m i n { 1 , ∑ i = 1 m θ i ∣ x i − x i ′ ∣ } \mathbf R (\mathbf x,\mathbf x')=1-1.5\zeta+0.5 \zeta ^3, \\ \zeta=min\{ 1,\sum_{i=1}^m\theta_i \lvert x_i-x_i' \rvert \} R(x,x)=11.5ζ+0.5ζ3,ζ=min{1,i=1mθixixi∣}
Spline function R ( x , x ′ ) = { 1 − 15 ( ∑ i = 1 m θ i ∣ x i − x i ′ ∣ ) 2 + 30 ( ∑ i = 1 m θ i ∣ x i − x i ′ ∣ ) 3                0 ≤ ∑ i = 1 m θ i ∣ x i − x i ′ ∣ ≤ 0.2 1.25 ( 1 − ( ∑ i = 1 m θ i ∣ x i − x i ′ ∣ ) 3 )                    0.2 ≤ ∑ i = 1 m θ i ∣ x i − x i ′ ∣ ≤ 1 0                                   ∑ i = 1 m θ i ∣ x i − x i ′ ∣ ≥ 1 \mathbf R(\mathbf x , \mathbf x')=\begin {cases}1-15(\sum_{i=1}^m \theta_i \lvert x_i-x_i' \rvert )^2+30(\sum_{i=1}^m \theta_i \lvert x_i-x_i' \rvert )^3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\leq\sum_{i=1}^m \theta_i \lvert x_i-x_i' \rvert \leq0.2 \\ 1.25(1-(\sum_{i=1}^m\theta_i \lvert x_i-x_i' \rvert)^3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.2\leq\sum_{i=1}^m\theta_i \lvert x_i-x_i' \rvert \leq 1 \\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sum_{i=1}^m\theta_i \lvert x_i-x_i' \rvert \ge1 \end {cases} R(x,x)= 115(i=1mθixixi)2+30(i=1mθixixi)3              0i=1mθixixi0.21.25(1(i=1mθixixi)3)                  0.2i=1mθixixi10                                 i=1mθixixi1

2.4 模型参数训练

采用“最大似然估计”对 Cokriging 模型超参数进行训练,由前述引入的高斯静态随机过程的假设,在任意一点 x \mathbf x x 处的响应值 y ^ ( x ) \hat y(\mathbf x) y^(x) 服从正态分布 N ( β 0 , σ 2 ) N(\beta_0,\sigma^2) N(β0,σ2) ,则每个样本点处的概率密度函数为:

P [ Y ( x ) ] = 1 2 π σ e x p ( − ( y ( i ) − β 0 ) 2 2 σ 2 ) , i = 1 , … , n 1 + n 2 (23) P[Y(\mathbf x)]= \frac {1}{\sqrt{2\pi}\sigma}exp\left( -\frac{(y^{(i)}-\beta_0)^2}{2\sigma^2} \right),i=1, \ldots,n_1+n_2 \tag{23} P[Y(x)]=2π σ1exp(2σ2(y(i)β0)2),i=1,,n1+n2(23)
则所有样本点的联合分布密度(即似然函数)为:
L ( β ~ 0 , σ 1 / σ 2 , θ ( 11 ) , θ ( 12 ) , θ ( 22 ) ) = 1 ( 2 π σ 1 2 ) ( n 1 + n 2 ) ∣ R ∣ ⋅ e x p ( − 1 2 ( y ~ s − F β ~ ) T R − 1 ( y ~ s − F β ~ ) σ 2 ) (24) L(\widetilde {\boldsymbol\beta}_0,\sigma_1/\sigma_2,\boldsymbol \theta^{(11)},\boldsymbol \theta^{(12)},\boldsymbol \theta^{(22)})=\frac{1}{\sqrt {(2\pi\sigma_1^2)^{(n_1+n_2)}|\mathbf R|}}\cdot exp(-\frac{1}{2}\frac {(\widetilde {\mathbf y}_s-\mathbf F\widetilde{\boldsymbol \beta})^T\mathbf R^{-1}(\widetilde {\mathbf y}_s-\mathbf F\widetilde{\boldsymbol \beta})}{\sigma^2}) \tag{24} L(β 0,σ1/σ2,θ(11),θ(12),θ(22))=(2πσ12)(n1+n2)R 1exp(21σ2(y sFβ )TR1(y sFβ ))(24)

与Kriging模型推导过程相似,让似然函数最大,可以得到:
β ~ = ( F T R − 1 F ) − 1 F T R − 1 y ~ s σ 1 σ 2 = ( [ 0 y 2 ] T R − 1 [ 0 y 2 ] ) − 1 [ 0 y 2 ] T R − 1 [ − ( y 1 − F 1 β ~ 1 ) − F 2 β ~ 2 ] σ 1 2 = ( y ~ s − F β ~ ) T R − 1 ( y ~ s − F β ~ ) T n 1 + n 2 (25) \begin {align} &\widetilde {\boldsymbol \beta}=(\mathbf F^T\mathbf R^{-1}\mathbf F)^{-1}\mathbf F^T\mathbf R^{-1}\widetilde {\mathbf y}_s \\ & \frac{\sigma_1}{\sigma_2}=\begin {pmatrix} \begin {bmatrix} \mathbf 0 \\ \mathbf y_2\end {bmatrix}^T\mathbf R^{-1}\begin {bmatrix} \mathbf 0 \\ \mathbf y_2 \end {bmatrix} \end {pmatrix}^{-1}\begin {bmatrix} \mathbf 0 \\ \mathbf y_2 \end {bmatrix}^T \mathbf R^{-1}\begin {bmatrix} -(\mathbf y_1-\mathbf F_1 \widetilde \beta_1) \\ -\mathbf F_2\widetilde \beta_2 \end {bmatrix} \\ & \sigma_1^2=\frac{(\widetilde {\mathbf y}_s-\mathbf F\widetilde {\boldsymbol\beta})^T\mathbf R^{-1}(\widetilde {\mathbf y}_s-\mathbf F\widetilde{\boldsymbol \beta})^T}{n_1+n_2} \end {align} \tag {25} β =(FTR1F)1FTR1y sσ2σ1=([0y2]TR1[0y2])1[0y2]TR1[(y1F1β 1)F2β 2]σ12=n1+n2(y sFβ )TR1(y sFβ )T(25)
将上式代入式(22)并对等式两边取对数有:
l n [ L ( θ ( 11 ) , θ ( 12 ) , θ 22 ) ] = − 1 2 [ ( n 1 + n 2 ) ⋅ l n ( σ 1 2 ) + l n ( ∣ R ∣ ) ] (26) ln[L(\boldsymbol\theta^{(11)},\boldsymbol \theta^{(12)},\boldsymbol \theta^{22})]=-\frac {1}{2}[(n_1+n_2)\cdot ln(\sigma_1^2)+ln(|\mathbf R|)] \tag{26} ln[L(θ(11),θ(12),θ22)]=21[(n1+n2)ln(σ12)+ln(R)](26)
无法解析地求出 θ ( 11 ) \boldsymbol \theta^{(11)} θ(11) θ ( 12 ) \boldsymbol \theta^{(12)} θ(12) θ ( 22 ) \boldsymbol \theta^{(22)} θ(22) 的最优值,需要采用数值优化算法寻优,如梯度优化算法等。

参考文献

[1] Han Z , Zimmerman R , GoRtz S . Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling[J]. Aiaa Journal, 2012, 50(5):1205-1210.

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: Kriging是一种空间插值技术,其目的是根据样本点的空间关系,预测空间中未知位置的值。Matlab是一种编程语言和计算工具,可用于实现各种科学计算任务。 在Matlab中,可以使用kriging函数来进行Kriging插值。该函数需要输入一些参数,例如空间坐标,观测值,残差变差函数和预测位置。然后,该函数将使用Kriging模型根据样本点的空间布局来估计未知位置的值。用户还可以使用其他函数来可视化Kriging结果,例如surf函数来创建三维表面图。 使用Kriging可用于许多应用程序,例如地球科学,环境监测和工程设计。Kriging还具有许多变体,例如指数Kriging和简化Kriging。这些变体具有不同的目的和参数,可以根据应用程序的需要进行选择和调整。 Kriging在Matlab中的实现使其成为强大的空间分析工具,可用于处理大量的复杂数据集。 MatLab提供了易于使用和可靠的接口,使得数据的分析和处理变得简单和直观。这使得Kriging成为了处理空间数据的重要工具。 ### 回答2: Kriging 是一种空间插值技术,也被称为最优插值方法或克里格插值。它是一种基于统计学和地质学原理的高级插值方法,可以用于精确预测离散数据的空间分布,并产生均匀光滑的表面。 Kriging方法可以利用自相关和协方差信息,以及多个观察点之间的距离和方向来确定未知位置的值。在内插过程中,K的选择和模型拟合参数是必要的。 MATLAB 是一款科学计算软件,它的强大性能和广泛的功能使其成为Kriging方法实施的一种非常好的工具。MATLAB提供了一些内置的函数和工具箱,可用于Kriging,例如 Spatial Statistics Toolbox 和 Mapping Toolbox。Spatial Statistics Toolbox中具有一系列专用的kriging工具,可以进行不同类型的kriging,包括简单克里格、ORD克里格、泊松曼克妙夫斯基(POM)克里格、以及 Universal Kriging等。此外,MATLAB还提供了用于计算Kriging模型的函数和工具,例如 kriging,krig,kriging_interp2 和 interp2。 要在MATLAB中实施kriging,需要进行一系列基本步骤,包括数据采集、预处理、样本变异的评估和模型参数化、控制和检验。数据采集和预处理可以使用各种方法,包括测量、遥感技术、地形数据、地下数据等。样本变异的评估可以使用半方差函数(SVF)方法和经验函数方法,并使用可利用MATLAB进行计算的校准参数和插值方法。对于模型参数化,可基于选择的kriging表面类型、样本数量和变量之间的关系来执行。最后,模型检验和验证可以使用预测精度测量、交叉验证、残差分析等方法。 总的来说,利用MATLAB实现kriging方法,最终可以得到高质量的空间结构信息和精确的表面预测结果。无论您要处理任何类型的离散数据和地理数据,MATLAB的Kriging工具都可以帮助您快速、准确地进行空间插值和预测。 ### 回答3: Kriging是一种基于空间统计学的插值方法,通常用于地质学、地理信息系统、气象学、环境科学和农业等领域中,以估算空间数据的未知值。它可以通过建立空间自相关模型来预测未知点的值,并提供了误差估计量。 在Matlab中,kriging有多种实现方式,其中最常用的方法是基于Variogram模型的Ordinary Kriging(OK)。 Ordinary Kriging(OK)是一种插值技术,它以数据点的值和距离为基础,建立经验变异函数,并利用这个函数来计算未知点的值。通常,Ordinary Kriging估算值的精度比普通线性插值更高,并且它可以估算空间模式的自相关性。 在Matlab中,可以使用Kriging Toolbax插件来执行kriging分析。该工具箱提供了各种kriging模型算法,可用于估算点数据和空间数据。 使用Kriging Toolbax执行kriging分析的一般步骤如下: 1.加载数据:输入已知点数据并确定待估点的坐标。 2.建立半方差点图:根据数据点之间的距离计算半方差并将其绘制为点图。 3.选取等值线:选择半方差函数的等值线,并确定插值表面的变换函数。 4.确定Krige参数:确定Krige插值方法的参数,如:方差、距离阈值、样本点数量、kriging权值等。 5.执行Krige分析:使用已选择的Krige算法预测未知点的值,并得到误差度量。 6.评估Krige结果:使用重交叉检验法(cross validation)或其他方法评估krige的结果的质量。 总的来说,kriging在Matlab中的实现非常简单,它是一个非常有用的工具,可以为许多应用场景提供可靠预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值