《Algorithms for Optimization》第一章笔记

本书从工程角度关注优化,其目标是设计一个系统,使一组受约束的指标得到优化。

01 优化的过程

1-1 优化的流程

优化设计的一般流程如图1所示,在优化设计中设计者要做的事包括:1)提供一个问题规范,明确定义优化的设计变量、优化目标和约束等;2)负责构思问题并量化潜在设计的优点;3)为优化设计提供基准设计;4)分析优化设计的结果,以确保其对最终应用的适用性。
在这里插入图片描述

图1 优化设计的一般流程

可能导致优化失败的原因:1)优化问题的不当定义。定义优化问题的方式可以使问题的求解变得更简单或更复杂;2)糟糕的基准设计输入;3)优化过程出错;4)不合适的优化算法。

工程师的工程经验通常对二维和三维问题比较有效,而现代优化技术可以处理具有数百万变量和约束的问题,这是优化设计的优势所在。

02 单变量函数的关键点

单变量函数某点导数为0是此点是局部极小值的必要不充分条件。
函数的拐点是二阶导变号的点,对应的着函数导数值的局部最小值或最大值,注意拐点处的导数不一定为0。
在这里插入图片描述

图2 单变量函数的关键点

03 函数局部极小值的条件

3-1 单变量函数

  • 单变量函数强局部最小值的充分条件
    f ′ ( x ∗ ) = 0 f ′ ′ ( x ∗ ) > 0 (1) \begin {align} &f'(x^*)=0 \\ &f''(x^*)>0 \end {align} \tag1 f(x)=0f′′(x)>0(1)
  • 单变量函数局部最小值的必要条件
    一阶必要条件( F O N C ): f ′ ( x ∗ ) = 0 二阶必要条件( S O N C ): f ′ ′ ( x ∗ ) ≥ 0 (2) \begin {align} &一阶必要条件(FONC):f'(x^*)=0 \\ &二阶必要条件(SONC):f''(x^*) \geq 0 \end {align} \tag2 一阶必要条件(FONC):f(x)=0二阶必要条件(SONC):f′′(x)0(2)
    在这里插入图片描述
图3 单变量函数局部最小值 的必要条件图示

3-2 多变量函数

  • x ⃗ \vec{\mathbf x} x 是多变量函数局部最小值的充分条件:
    一阶必要条件( F O N C ): ∇ f ( x ) = 0 二阶必要条件( S O N C ): ∇ 2 f ( x ∗ ) > 0 ( H e s s i a n 矩阵正定 ) (3) \begin {align} &一阶必要条件(FONC):\nabla f(\mathbf x)=0 \\ &二阶必要条件(SONC):\nabla^2 f(x^*) > 0(Hessian矩阵正定) \end {align} \tag3 一阶必要条件(FONC):f(x)=0二阶必要条件(SONC):2f(x)>0(Hessian矩阵正定)(3)
  • x ⃗ \vec{\mathbf x} x 是多变量函数局部最小值的必要条件:
    一阶必要条件( F O N C ): ∇ f ( x ) = 0 二阶必要条件( S O N C ): ∇ 2 f ( x ∗ ) ≥ 0 ( H e s s i a n 矩阵半正定 ) (3) \begin {align} &一阶必要条件(FONC):\nabla f(\mathbf x)=0 \\ &二阶必要条件(SONC):\nabla^2 f(x^*) \geq 0(Hessian矩阵半正定) \end {align} \tag3 一阶必要条件(FONC):f(x)=0二阶必要条件(SONC):2f(x)0(Hessian矩阵半正定)(3)
    在这里插入图片描述
图4 多变量函数局部最小值 的必要条件图示

参考文献

[1] Kochenderfer M J, Wheeler T A. Algorithms for optimization[M]. Mit Press, 2019.

  • 16
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值