这段文字描述了作者在使用TensorBoard进行机器学习模型训练时遇到的问题和解决方法,并展示了模型训练结果和下一步计划。
问题描述:
- 作者在使用TensorBoard时遇到了无法训练多个epoch的问题,并通过调整TensorBoard的启动方式解决了问题。
- 作者发现TensorBoard日志记录出现了问题,可能是由于重复写入导致的。
解决方案:
- 作者通过使用
localhost:6006
的方式成功启动TensorBoard。 - 作者通过调整TensorBoard日志记录方式解决了日志问题。
模型训练结果:
- 作者训练了三个epoch的模型,模型的准确率达到了24.5%到25%之间,比随机选择高出4%到5%,这表明模型的训练效果良好。
- 作者发现数据准备过程耗时较长,占用了模型训练时间的三分之一。
下一步计划:
- 作者计划使用训练好的模型进行游戏测试,并通过统计分析评估模型的性能提升。
- 作者将通过比较模型和随机选择在游戏中的胜率来进一步评估模型的有效性。
- 作者将通过分析模型的统计数据,例如平均值和直方图,来判断模型是否取得了进步。
总结:
这段文字详细介绍了作者在机器学习模型训练过程中遇到的问题、解决方法和模型训练结果,并展望了下一步计划。作者通过使用TensorBoard和游戏测试等方法,对模型进行评估和改进,最终目标是提高模型的性能,使其在游戏中取得更好的表现。
将我们的游戏/数据收集脚本转换为使用我们的模型,并加入一定程度的随机性,以便我们的神经网络从中学习。