【高等数学】铺垫知识

基础知识

邻域

  • 邻域 U ( x 0 , δ ) = ( x 0 − δ , x 0 + δ ) U(x_0,\delta)=(x_0-\delta,x_0+\delta) U(x0,δ)=(x0δ,x0+δ)
  • 去心邻域 U ˚ ( x 0 , δ ) = U ( x 0 , δ ) ∖ { x 0 } \mathring{U}(x_0,\delta)=U(x_0,\delta) \setminus \{x_0\} U˚(x0,δ)=U(x0,δ){x0}
  • 左邻域 U ( x 0 − , δ ) = ( x 0 − δ , x 0 ) U(x_0^-,\delta)=(x_0-\delta,x_0) U(x0,δ)=(x0δ,x0)
  • 右邻域 U ( x 0 + , δ ) = ( x 0 , x 0 + δ ) U(x_0^+,\delta)=(x_0,x_0+\delta) U(x0+,δ)=(x0,x0+δ)

函数的定义

  • 集合 A , B A,B A,B
  • 对应法则 f : A → B f: A\to B f:AB
  • 每个 x ∈ A x\in A xA, 有唯一的 y ∈ B y\in B yB 与之对应。称 y = f ( x ) y=f(x) y=f(x) 是函数 (单值函数)
  • x x x 是自变量,取值范围称为定义域,记作 D ( f ) D(f) D(f)
  • y y y 是因变量,取值范围称为值域,记作 R ( f ) R(f) R(f)

复合函数

定义

  • f : D ( f ) → R ( f ) f:D(f)\to R(f) f:D(f)R(f), g : D ( g ) → R ( g ) g:D(g)\to R(g) g:D(g)R(g),
  • 并且 g ( D ( f ) ) ⊂ D ( f ) g(D(f))\subset D(f) g(D(f))D(f),
  • y = f ( g ( x ) ) y=f(g(x)) y=f(g(x)) y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x) 的复合函数,记作 ( f ∘ g ) ( x ) (f\circ g)(x) (fg)(x)

性质

  • ( f ∘ g ) ∘ h ( x ) = f ( g ( h ( x ) ) ) = f ∘ ( g ∘ h ) ( x ) (f\circ g) \circ h (x)= f(g(h(x)))= f\circ (g \circ h) (x) (fg)h(x)=f(g(h(x)))=f(gh)(x)
  • ( f ∘ f − 1 ) ( y ) = y , y ∈ R ( f ) (f\circ f^{-1}) (y)= y, y\in R(f) (ff1)(y)=y,yR(f)
  • ( f − 1 ∘ f ) ( x ) = x , x ∈ D ( f ) (f^{-1} \circ f) (x)= x, x\in D(f) (f1f)(x)=x,xD(f),

反函数

定义

  • f : D ( f ) → R ( f ) f:D(f)\to R(f) f:D(f)R(f), 若每个 y ∈ R ( f ) y\in R(f) yR(f) 有唯一 x ∈ D ( f ) x\in D(f) xD(f) 与之对应, 称
  • x = f − 1 x=f^{-1} x=f1 y = f ( x ) y=f(x) y=f(x) 的反函数

多值函数*

  • 如果给定 x ∈ A x\in A xA, 有多个 y ∈ B y\in B yB 与之对应, 称 y ∈ f ( x ) y\in f(x) yf(x) 是多值函数
  • 多值函数的化为若干单值函数的,每个单值函数是一个单值分支

基本初等函数(实数系)

指数函数

  • 给定 a > 0 ,   a ≠ 1 a>0,~ a\neq 1 a>0, a=1, a x a^x ax
  • e x e^x ex

三角函数

  • 给定直角三角形,一个角 θ \theta θ 对边 a a a, 邻边 b b b, 直角边 c = a 2 + b 2 c=\sqrt{a^2+b^2} c=a2+b2
  • 正弦函数 sin ⁡ ( θ ) = a c \sin(\theta)=\frac{a}{c} sin(θ)=ca, 余弦函数 cos ⁡ ( θ ) = b c \cos(\theta)=\frac{b}{c} cos(θ)=cb, θ ∈ R \theta\in \mathbf{R} θR
  • 正切函数 tan ⁡ ( θ ) = a b \tan(\theta)=\frac{a}{b} tan(θ)=ba, θ ≠ π 2 + k π \theta\neq \frac{\pi}{2}+k\pi θ=2π+, k ∈ Z k\in \mathbf{Z} kZ, 余切函数 cot ⁡ ( θ ) = b a \cot(\theta)=\frac{b}{a} cot(θ)=ab, θ ≠ k π \theta\neq k\pi θ=, k ∈ Z k\in \mathbf{Z} kZ
  • 正割函数 sec ⁡ ( θ ) = c b \sec(\theta)=\frac{c}{b} sec(θ)=bc, θ ≠ π 2 + k π \theta\neq \frac{\pi}{2}+k\pi θ=2π+, k ∈ Z k\in \mathbf{Z} kZ, 余割函数 csc ⁡ ( θ ) = c a \csc(\theta)=\frac{c}{a} csc(θ)=ac, θ ≠ k π \theta\neq k\pi θ=, k ∈ Z k\in \mathbf{Z} kZ

幂函数

  • x a x^a xa, a ∈ Z + a\in \mathbf{Z}_+ aZ+ 时, D ( f ) = R D(f)=\mathbf{R} D(f)=R
  • x a x^a xa, a ∈ Z − a\in \mathbf{Z}_- aZ 时, D ( f ) = { x , x ≠ 0 } D(f)=\{x, x\neq 0\} D(f)={x,x=0}
  • x 1 2 k + 1 x^{\frac{1}{2k+1}} x2k+11, k ∈ N k\in \mathbf{N} kN 时, D ( f ) = R D(f)=\mathbf{R} D(f)=R
  • x 1 2 k x^{\frac{1}{2k}} x2k1, k ∈ Z + k\in \mathbf{Z}_+ kZ+ 时, D ( f ) = { x , x ≥ 0 } D(f)=\{x,x\geq0\} D(f)={x,x0}
  • x − 1 2 k + 1 x^{-\frac{1}{2k+1}} x2k+11, k ∈ N k\in \mathbf{N} kN 时, D ( f ) = { x , x ≠ 0 } D(f)=\{x,x\neq 0\} D(f)={x,x=0}
  • x − 1 2 k x^{-\frac{1}{2k}} x2k1, k ∈ Z + k\in \mathbf{Z}_+ kZ+ 时, D ( f ) = { x , x > 0 } D(f)=\{x, x>0\} D(f)={x,x>0}

对数函数

  • a x a^x ax, a > 0 , a ≠ 1 a>0, a\neq 1 a>0,a=1 的反函数 y = log ⁡ a ( x ) y=\log_a(x) y=loga(x)
  • e x e^x ex 的反函数 y = ln ⁡ ( x ) y=\ln(x) y=ln(x)

反三角函数

  • y = arcsin ⁡ ( x ) y=\arcsin(x) y=arcsin(x), y ∈ [ − π 2 , π 2 ] y\in [-\frac{\pi}{2},\frac{\pi}{2}] y[2π,2π]
  • y = arccos ⁡ ( x ) y=\arccos(x) y=arccos(x), y ∈ [ 0 , π ] y\in [0,\pi] y[0,π]
  • y = arctan ⁡ ( x ) y=\arctan(x) y=arctan(x), y ∈ ( − π 2 , π 2 ) y\in (-\frac{\pi}{2},\frac{\pi}{2}) y(2π,2π)
  • y = a r c c o t ( x ) y=\mathrm{arccot}(x) y=arccot(x), y ∈ ( 0 , π ) y\in (0,\pi) y(0,π)

初等函数

初等函数通过有限次加减乘除,复合,反函数都是初等函数

函数的性质

函数的有界性

  • D D D 上函数有 上界: 存在 L L L, ∀ x ∈ A \forall x\in A xA, f ( x ) ≤ L f(x)\leq L f(x)L
  • D D D 上函数有 下界: 存在 L L L, ∀ x ∈ A \forall x\in A xA, f ( x ) ≥ L f(x)\geq L f(x)L
  • D D D 上函数 有界: 存在 M > 0 M>0 M>0, ∀ x ∈ A \forall x\in A xA, ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M

函数的单调性

  • D D D单调增加 ∀ x 1 , x 2 ∈ D ( f ) \forall x_1,x_2\in D(f) x1,x2D(f), ( f ( x 1 ) − f ( x 2 ) ) ( x 1 − x 2 ) ≥ 0 (f(x_1)-f(x_2))(x_1-x_2)\geq 0 (f(x1)f(x2))(x1x2)0
  • D D D严格单调增加 ∀ x 1 , x 2 ∈ D ( f ) \forall x_1,x_2\in D(f) x1,x2D(f), x 1 ≠ x 2 x_1\neq x_2 x1=x2, ( f ( x 1 ) − f ( x 2 ) ) ( x 1 − x 2 ) > 0 (f(x_1)-f(x_2))(x_1-x_2)> 0 (f(x1)f(x2))(x1x2)>0
  • D D D单调减少 ∀ x 1 , x 2 ∈ D ( f ) \forall x_1,x_2\in D(f) x1,x2D(f), ( f ( x 1 ) − f ( x 2 ) ) ( x 1 − x 2 ) ≤ 0 (f(x_1)-f(x_2))(x_1-x_2)\leq 0 (f(x1)f(x2))(x1x2)0
  • D D D严格单调增加 ∀ x 1 , x 2 ∈ D ( f ) \forall x_1,x_2\in D(f) x1,x2D(f), x 1 ≠ x 2 x_1\neq x_2 x1=x2, ( f ( x 1 ) − f ( x 2 ) ) ( x 1 − x 2 ) < 0 (f(x_1)-f(x_2))(x_1-x_2)<0 (f(x1)f(x2))(x1x2)<0

函数的凹凸性 [前苏联学派]

  • 定义1: ∀ x 1 , x 2 ∈ [ a , b ] \forall x_1,x_2\in [a,b] x1,x2[a,b], f ( x 1 + x 2 2 ) ≤ 1 2 ( f ( x 1 ) + f ( x 2 ) ) f(\frac{x_1+x_2}{2})\leq \frac{1}{2}(f(x_1)+f(x_2)) f(2x1+x2)21(f(x1)+f(x2)), 称 f f f [ a , b ] [a,b] [a,b]凹的

  • 定义2: ∀ x 1 , x 2 ∈ [ a , b ] \forall x_1,x_2\in [a,b] x1,x2[a,b], ∀ t ∈ [ 0 , 1 ] \forall t\in [0,1] t[0,1], f ( ( 1 − t ) x 1 + t x 2 ) ≤ ( 1 − t ) f ( x 1 ) + t f ( x 2 ) f((1-t)x_1+tx_2)\leq (1-t)f(x_1)+tf(x_2) f((1t)x1+tx2)(1t)f(x1)+tf(x2), 称 f f f [ a , b ] [a,b] [a,b]凹的

  • 定义1: ∀ x 1 , x 2 ∈ [ a , b ] \forall x_1,x_2\in [a,b] x1,x2[a,b], f ( x 1 + x 2 2 ) ≥ 1 2 ( f ( x 1 ) + f ( x 2 ) ) f(\frac{x_1+x_2}{2})\geq \frac{1}{2}(f(x_1)+f(x_2)) f(2x1+x2)21(f(x1)+f(x2)), 称 f f f [ a , b ] [a,b] [a,b]凸的

  • 定义2: ∀ x 1 , x 2 ∈ [ a , b ] \forall x_1,x_2\in [a,b] x1,x2[a,b], ∀ t ∈ [ 0 , 1 ] \forall t\in [0,1] t[0,1], f ( ( 1 − t ) x 1 + t x 2 ) ≥ ( 1 − t ) f ( x 1 ) + t f ( x 2 ) f((1-t)x_1+tx_2)\geq (1-t)f(x_1)+tf(x_2) f((1t)x1+tx2)(1t)f(x1)+tf(x2), 称 f f f [ a , b ] [a,b] [a,b]凸的

函数的奇偶性

  • 奇函数 D ( f ) D(f) D(f) 关于y轴轴对称, f ( x ) + f ( − x ) = 0 f(x)+f(-x)=0 f(x)+f(x)=0, ∀ x ∈ D ( f ) \forall x\in D(f) xD(f)
  • 偶函数 D ( f ) D(f) D(f) 关于y轴轴对称, f ( x ) − f ( − x ) = 0 f(x)-f(-x)=0 f(x)f(x)=0, ∀ x ∈ D ( f ) \forall x\in D(f) xD(f)

函数的周期性

  • 定义:存在常数 T T T, ∀ x ∈ D ( f ) \forall x\in D(f) xD(f), f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
  • 性质: f ( x + k T ) = f ( x ) f(x+kT)=f(x) f(x+kT)=f(x), k ∈ Z k\in \mathbf{Z} kZ.

函数的轴对称性

  • ∀ x ∈ D ( f ) \forall x\in D(f) xD(f), f ( a + x ) = f ( a − x ) f(a +x)=f(a-x) f(a+x)=f(ax) f f f 关于直线 x = a x=a x=a 轴对称
  • ∀ x ∈ D ( f ) \forall x\in D(f) xD(f), f ( x ) = f ( 2 a − x ) f(x)=f(2a-x) f(x)=f(2ax) f f f 关于直线 x = a x=a x=a 轴对称
  • ∀ x ∈ D ( f ) \forall x\in D(f) xD(f), f ( x ) = f ( b − x ) f(x)=f(b-x) f(x)=f(bx) f f f 关于直线 x = b 2 x=\frac{b}{2} x=2b 轴对称

函数在一点处的收敛性

  • ∃ A \exists A A, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) \forall x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 称 函数 f f f x 0 x_0 x0 处收敛. A A A未必等于 f ( x 0 ) f(x_0) f(x0)

函数在无穷远处的收敛性

  • ∃ A \exists A A, ∀ X > 0 \forall X>0 X>0, ∃ X > 0 \exists X>0 X>0, ∀ x ∈ ( − ∞ , − X ) ∪ ( X , + ∞ ) \forall x\in (-\infty,-X)\cup (X,+\infty) x(,X)(X,+), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 称函数 f f f 在无穷远收敛.

函数的连续性

定义

  • 定义1 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0, ∀ x ∈ U ( x 0 , δ ) \forall x\in U(x_0,\delta) xU(x0,δ), ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε f f f x 0 x_0 x0连续
  • 定义2 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0} f(x)=f(x_0) xx0limf(x)=f(x0) f f f x 0 x_0 x0连续
  • 定义D ∀ x ∈ A \forall x\in A xA, f f f x x x 处连续, 则称 f f f A A A连续

性质: f 1 f_1 f1 D 1 ( f ) D_1(f) D1(f) 连续 f 1 f_1 f1 D 1 ( f ) D_1(f) D1(f) 连续

  • 加法封闭: f 1 ( x ) + f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) f_1(x)+f_2(x), x\in D(f_1)\cap D(f_2) f1(x)+f2(x),xD(f1)D(f2) 连续
  • 减法封闭: f 1 ( x ) − f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) f_1(x)-f_2(x), x\in D(f_1)\cap D(f_2) f1(x)f2(x),xD(f1)D(f2) 连续
  • 乘法封闭: f 1 ( x ) ⋅ f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) f_1(x)\cdot f_2(x), x\in D(f_1)\cap D(f_2) f1(x)f2(x),xD(f1)D(f2) 连续
  • 除法封闭: f 1 ( x ) f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) \frac{f_1(x)}{f_2(x)}, x\in D(f_1)\cap D(f_2) f2(x)f1(x),xD(f1)D(f2) 连续 ( f 2 ( x ) ≠ 0 f_2(x)\neq 0 f2(x)=0)
  • 复合封闭: f 1 ( f 2 ( x ) ) f_1(f_2(x)) f1(f2(x)), x ∈ D ( f 1 ∘ f 2 ) x\in D(f_1\circ f_2) xD(f1f2) 连续

函数的可微性

可导定义

  • f ( x ) f(x) f(x) x 0 x_0 x0连续
  • f ′ ( x 0 ) = lim ⁡ t → 0 f ( x 0 + t ) − f ( x 0 ) t f'(x_0)=\lim\limits_{t\to 0} \frac{f(x_0+t)-f(x_0)}{t} f(x0)=t0limtf(x0+t)f(x0) 存在
  • f f f x 0 x_0 x0 可导

连续可导

  • ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ U ( x 0 , δ ) \forall x\in U(x_0,\delta) xU(x0,δ), f f f x x x 可导
  • 导函数 f ′ f' f U ( x 0 , δ ) U(x_0,\delta) U(x0,δ)连续
  • 称函数 f f f U ( x 0 , δ ) U(x_0,\delta) U(x0,δ) 连续可导

函数的可积性

  • f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 满足 ∃ A \exists A A

  • ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ λ > 0 \exists \lambda>0 λ>0,

  • ∀ x i ∈ [ a , b ] \forall x_i\in [a,b] xi[a,b], a = x 0 < x 1 < ⋯ < x n − 1 < x n = b a=x_0< x_1< \cdots < x_{n-1}< x_n=b a=x0<x1<<xn1<xn=b, ∣ x i − x i − 1 ∣ < λ |x_i-x_{i-1}|<\lambda xixi1<λ, ∀ i = 1 , ⋯   , n \forall i=1,\cdots,n i=1,,n

  • ∀ ξ i ∈ [ x i , x i + 1 ] , i = 1 , ⋯   , n \forall \xi_i\in [x_i,x_{i+1}], i=1,\cdots,n ξi[xi,xi+1],i=1,,n


  • ∣ ∑ i = 1 N f ( ξ i ) ( x i + 1 − x i ) − A ∣ < ε \left|\sum_{i=1}^N f(\xi_i)(x_{i+1}-x_i)-A\right|<\varepsilon i=1Nf(ξi)(xi+1xi)A <ε

  • f f f [ a , b ] [a,b] [a,b]可积, 记 A = ∫ a b f ( x ) d x A=\int_a^b f(x) d x A=abf(x)dx

数列的极限

  • ∃ A \exists A A, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ N ∈ N \exists N\in \mathbf{N} NN, ∀ n > N \forall n>N n>N ∣ x n − A ∣ < ε |x_n-A|<\varepsilon xnA<ε, 则称数列 { x n } \{x_n\} {xn} 收敛, 记 lim ⁡ n → ∞ x n = A \lim\limits_{n\to \infty} x_n=A nlimxn=A.

函数在一点处的极限

  • ∃ A \exists A A, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) \forall x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 则称函数 f f f x 0 x_0 x0 处收敛. A A A未必等于 f ( x 0 ) f(x_0) f(x0), 记 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0} f(x)=A xx0limf(x)=A.

函数在一点处的左极限

  • ∃ A \exists A A, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) \forall x\in (x_0-\delta,x_0) x(x0δ,x0), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 记 lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x\to x_0^-} f(x)=A xx0limf(x)=A.

函数在一点处的右极限

  • ∃ A \exists A A, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 , x 0 + δ ) \forall x\in (x_0,x_0+\delta) x(x0,x0+δ), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 记 lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to x_0^+} f(x)=A xx0+limf(x)=A.

函数在无穷远处的极限

  • ∃ A \exists A A, ∀ X > 0 \forall X>0 X>0, ∃ X > 0 \exists X>0 X>0, ∀ x ∈ ( − ∞ , − X ) ∪ ( X , + ∞ ) \forall x\in (-\infty,-X)\cup (X,+\infty) x(,X)(X,+), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 称函数 f f f 在无穷远收敛.

函数在正无穷处的极限

  • ∃ A \exists A A, ∀ X > 0 \forall X>0 X>0, ∃ X > 0 \exists X>0 X>0, ∀ x ∈ ( X , + ∞ ) \forall x\in (X,+\infty) x(X,+), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 记 lim ⁡ x → + ∞ f ( x ) = A \lim\limits_{x\to+\infty} f(x)=A x+limf(x)=A

函数在负无穷处的极限

  • ∃ A \exists A A, ∀ X > 0 \forall X>0 X>0, ∃ X > 0 \exists X>0 X>0, ∀ x ∈ ( − ∞ , − X ) \forall x\in (-\infty,-X) x(,X), ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε, 称函数 f f f 在无穷远收敛.

无穷小量

在一点处无穷小量

  • ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) \forall x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ), ∣ f ( x ) ∣ < ε |f(x)|<\varepsilon f(x)<ε, 则称函数 f f f x 0 x_0 x0无穷小量. 记 f ( x ) = o ( x − x 0 ) f(x)=o(x-x_0) f(x)=o(xx0).

在无穷远处无穷小量

  • ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ X > 0 \exists X>0 X>0, ∀ x , ∣ x ∣ > X \forall x, |x|>X x,x>X, ∣ f ( x ) ∣ < ε |f(x)|<\varepsilon f(x)<ε, 则称函数 f f f 无穷处是 无穷小量.

无穷小量的比较

  • α \alpha α β \beta β高阶无穷小量 lim ⁡ x α ( x ) β ( x ) = 0 \lim_{x} \frac{\alpha(x)}{\beta(x)} =0 limxβ(x)α(x)=0
  • α \alpha α β \beta β低阶无穷小量 lim ⁡ x α ( x ) β ( x ) = ∞ \lim_{x} \frac{\alpha(x)}{\beta(x)} =\infty limxβ(x)α(x)=
  • α \alpha α β \beta β同阶无穷小量 lim ⁡ x α ( x ) β ( x ) = c ≠ 0 \lim_{x} \frac{\alpha(x)}{\beta(x)} =c\neq 0 limxβ(x)α(x)=c=0
  • α \alpha α β \beta β等价无穷小量 lim ⁡ x α ( x ) β ( x ) = 1 \lim_{x} \frac{\alpha(x)}{\beta(x)} =1 limxβ(x)α(x)=1

等价无穷小量列举

  • x ∼ sin ⁡ ( x ) ∼ tan ⁡ ( x ) ∼ ln ⁡ ( x + 1 ) ∼ e x − 1   ∼ arcsin ⁡ ( x ) ∼ arctan ⁡ ( x ) x\sim \sin(x)\sim \tan(x)\sim \ln(x+1)\sim e^x-1~\sim \arcsin(x)\sim\arctan(x) xsin(x)tan(x)ln(x+1)ex1 arcsin(x)arctan(x)
  • x 2 2 ∼ 1 − cos ⁡ ( x ) \frac{x^2}{2}\sim 1-\cos(x) 2x21cos(x)
  • x 3 2 ∼ sin ⁡ ( x ) ( 1 − cos ⁡ ( x ) ) ∼ tan ⁡ ( x ) − sin ⁡ ( x ) \frac{x^3}{2}\sim \sin(x)(1-\cos(x))\sim \tan(x)-\sin(x) 2x3sin(x)(1cos(x))tan(x)sin(x)
  • ( 1 + x ) α − 1 ∼ α x (1+x)^\alpha-1\sim \alpha x (1+x)α1αx
  • 1 + x − 1 ∼ x 2 \sqrt{1+x}-1\sim \frac{x}{2} 1+x 12x

在一点处无穷大量

  • ∀ M > 0 \forall M>0 M>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) \forall x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ), ∣ f ( x ) ∣ > M |f(x)|>M f(x)>M, 则称函数 f f f x 0 x_0 x0无穷大量. 记 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty xx0limf(x)=.

在一点处正无穷大量

  • ∀ M > 0 \forall M>0 M>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) \forall x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ), f ( x ) > M f(x)>M f(x)>M, 则称函数 f f f x 0 x_0 x0正无穷大量. 记 lim ⁡ x → x 0 f ( x ) = + ∞ \lim\limits_{x\to x_0}f(x)=+\infty xx0limf(x)=+.

在一点处负无穷大量

  • ∀ M > 0 \forall M>0 M>0, ∃ δ > 0 \exists \delta>0 δ>0, ∀ x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) \forall x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ), f ( x ) < − M f(x)<-M f(x)<M, 则称函数 f f f x 0 x_0 x0负无穷大量. 记 lim ⁡ x → x 0 f ( x ) = − ∞ \lim\limits_{x\to x_0}f(x)=-\infty xx0limf(x)=.

极限的性质

  • 保加法, 减法, 乘法, 分母不为0的除法
  • 保号性, 有界性, 连续函数的复合,
  • 夹逼原理: lim ⁡ a ( x ) = lim ⁡ b ( x ) = A \lim a(x)=\lim b(x)=A lima(x)=limb(x)=A, a ( x ) ≤ f ( x ) ≤ b ( x ) a(x)\leq f(x)\leq b(x) a(x)f(x)b(x) lim ⁡ f ( x ) = A \lim f(x)=A limf(x)=A
  • 单调有界收敛准则

函数的连续性

定义

  • 定义1 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0, ∀ x ∈ U ( x 0 , δ ) \forall x\in U(x_0,\delta) xU(x0,δ), ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε f f f x 0 x_0 x0连续
  • 定义2 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0} f(x)=f(x_0) xx0limf(x)=f(x0) f f f x 0 x_0 x0连续
  • 定义 ∀ x ∈ A \forall x\in A xA, f f f x x x 处连续, 则称 f f f A A A连续

左连续

  • 定义1 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0, ∀ x ∈ U ( x 0 − δ , x 0 ) \forall x\in U(x_0-\delta,x_0) xU(x0δ,x0), ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε f f f x 0 x_0 x0左连续
  • 定义2 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^-} f(x)=f(x_0) xx0limf(x)=f(x0) f f f x 0 x_0 x0左连续

右连续

  • 定义1 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0, ∀ x ∈ U ( x 0 , x 0 + δ ) \forall x\in U(x_0,x_0+\delta) xU(x0,x0+δ), ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε f f f x 0 x_0 x0右连续
  • 定义2 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^+} f(x)=f(x_0) xx0+limf(x)=f(x0) f f f x 0 x_0 x0右连续

性质: f 1 f_1 f1 D 1 ( f ) D_1(f) D1(f) 连续 f 1 f_1 f1 D 1 ( f ) D_1(f) D1(f) 连续

  • 加法封闭: f 1 ( x ) + f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) f_1(x)+f_2(x), x\in D(f_1)\cap D(f_2) f1(x)+f2(x),xD(f1)D(f2) 连续
  • 减法封闭: f 1 ( x ) − f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) f_1(x)-f_2(x), x\in D(f_1)\cap D(f_2) f1(x)f2(x),xD(f1)D(f2) 连续
  • 乘法封闭: f 1 ( x ) ⋅ f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) f_1(x)\cdot f_2(x), x\in D(f_1)\cap D(f_2) f1(x)f2(x),xD(f1)D(f2) 连续
  • 除法封闭: f 1 ( x ) f 2 ( x ) , x ∈ D ( f 1 ) ∩ D ( f 2 ) \frac{f_1(x)}{f_2(x)}, x\in D(f_1)\cap D(f_2) f2(x)f1(x),xD(f1)D(f2) 连续 ( f 2 ( x ) ≠ 0 f_2(x)\neq 0 f2(x)=0)
  • 复合封闭: f 1 ( f 2 ( x ) ) f_1(f_2(x)) f1(f2(x)), x ∈ D ( f 1 ∘ f 2 ) x\in D(f_1\circ f_2) xD(f1f2) 连续
  • 反函数封闭: f − 1 f^{-1} f1 y 0 y_0 y0 处连续当且仅当 f f f x 0 x_0 x0 处连续. ( y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0))

间断点

第一类间断点

  • 可去间断点: lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) ≠ f ( x 0 ) \lim\limits_{x\to x_0^-} f(x)=\lim\limits_{x\to x_0^+} f(x)\neq f(x_0) xx0limf(x)=xx0+limf(x)=f(x0)
  • 跳跃间断点: lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \lim\limits_{x\to x_0^-} f(x)\neq \lim\limits_{x\to x_0^+} f(x) xx0limf(x)=xx0+limf(x)

第二类间断点

  • 无穷间断点: lim ⁡ x → x 0 − f ( x ) = + ∞ \lim\limits_{x\to x_0^-} f(x)=+\infty xx0limf(x)=+ 或者 lim ⁡ x → x 0 + f ( x ) = + ∞ \lim\limits_{x\to x_0^+} f(x)=+\infty xx0+limf(x)=+
  • 震荡间断点: { lim ⁡ x → x 0 f ( x ) } \{\lim\limits_{x\to x_0} f(x)\} {xx0limf(x)} 不是单点集

闭区间 [a,b] 上连续函数

零点存在定理 f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0, ∃ ξ ∈ ( a , b ) \exists \xi\in (a,b) ξ(a,b), f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

介值定理 min ⁡ { f ( a ) , f ( b ) } ≤ c ≤ max ⁡ { f ( a ) , f ( b ) } \min\{f(a),f(b)\}\leq c\leq \max\{f(a),f(b)\} min{f(a),f(b)}cmax{f(a),f(b)}, ∃ ξ ∈ ( a , b ) \exists \xi\in (a,b) ξ(a,b), f ( ξ ) = c f(\xi)=c f(ξ)=c

最值定理 M = max ⁡ x ∈ [ a , b ] f ( x ) M=\max\limits_{x\in [a,b]}f(x) M=x[a,b]maxf(x), m = min ⁡ x ∈ [ a , b ] f ( x ) m=\min\limits_{x\in [a,b]} f(x) m=x[a,b]minf(x), ∃ ξ 1 ∈ ( a , b ) \exists \xi_1\in (a,b) ξ1(a,b), ∃ ξ 2 ∈ ( a , b ) \exist \xi_2\in (a,b) ξ2(a,b), f ( ξ 1 ) = M f(\xi_1)=M f(ξ1)=M, f ( ξ 2 ) = m f(\xi_2)=m f(ξ2)=m.

附录基本初等函数

指数函数

e x e^x ex

GeoGebra

y=e^x

在这里插入图片描述

对数函数

ln ⁡ ( x ) \ln(x) ln(x)

GeoGebra

y=ln(x)

在这里插入图片描述

三角函数

sin ⁡ ( x ) \sin(x) sin(x)

GeoGebra

y=sin(x)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackPercy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值