【高等数学】一元积分学

定积分

定义

  • f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 满足 ∃ A \exists A A
  • ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ λ > 0 \exists \lambda>0 λ>0,
  • ∀ { x i } ⊂ [ a , b ] \forall \{x_i\}\subset[a,b] {xi}[a,b], a = x 0 < x 1 < ⋯ < x n − 1 < x n = b a=x_0< x_1< \cdots < x_{n-1}< x_n=b a=x0<x1<<xn1<xn=b, max ⁡ i = 1 , ⋯   , n { ∣ x i − x i − 1 ∣ } < λ \max\limits_{i=1,\cdots,n}\{|x_i-x_{i-1}|\}<\lambda i=1,,nmax{xixi1}<λ
  • ∀ ξ i ∈ [ x i , x i + 1 ] , i = 1 , ⋯   , n \forall \xi_i\in [x_i,x_{i+1}], i=1,\cdots,n ξi[xi,xi+1],i=1,,n
  • ∣ ∑ i = 1 N f ( ξ i ) ( x i + 1 − x i ) − A ∣ < ε \left|\sum_{i=1}^N f(\xi_i)(x_{i+1}-x_i)-A\right|<\varepsilon i=1Nf(ξi)(xi+1xi)A <ε
  • f f f [ a , b ] [a,b] [a,b]可积, 记 A = ∫ a b f ( x ) d x A=\int_a^b f(x) d x A=abf(x)dx

可积函数性质

  • 保线性 ∫ a b [ α f ( x ) + β g ( x ) ] d x = α ∫ a b f ( x ) d x + β ∫ a b g ( x ) d x \int_a^b [\alpha f(x)+\beta g(x) ]dx=\alpha \int_a^b f(x) dx+\beta \int_a^b g(x) dx ab[αf(x)+βg(x)]dx=αabf(x)dx+βabg(x)dx
  • 区间可加性 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b f(x)dx=\int_a^c f(x) dx+\int_c^b f(x) dx abf(x)dx=acf(x)dx+cbf(x)dx
  • 保号性 f ( x ) ≥ 0 , x ∈ [ a , b ] f(x)\geq0, x\in [a,b] f(x)0,x[a,b], 则 ∫ a b f ( x ) d x ≥ 0 \int_a^b f(x) dx \geq 0 abf(x)dx0
  • 保序性 f ( x ) ≥ g ( x ) , x ∈ [ a , b ] f(x)\geq g(x), x\in [a,b] f(x)g(x),x[a,b], 则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_a^b f(x)dx \geq \int_a^b g(x) dx abf(x)dxabg(x)dx
  • 绝对值不等式 ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^b f(x)dx|\leq \int_a^b |f(x)|dx abf(x)dxabf(x)dx
  • 积分有界性 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积, 上界为 M M M 下界为 m m m,则
    ( b − a ) m ≤ ∫ a b f ( x ) d x ≤ ( b − a ) M (b-a)m\leq \int_a^b f(x) dx \leq (b-a) M (ba)mabf(x)dx(ba)M
  • 严格保号性 非负连续函数, 不恒为 0 0 0, 则 ∫ a b f ( x ) d x > 0 \int_a^b f(x) dx > 0 abf(x)dx>0
  • 积分中值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 连续, 存在 ξ ∈ ( a , b ) \xi\in (a,b) ξ(a,b), f ( ξ ) ( b − a ) = ∫ a b f ( x ) d x f(\xi)(b-a)=\int_a^b f(x) dx f(ξ)(ba)=abf(x)dx
  • 正定性 f f f [ a , b ] [a,b] [a,b] 连续, ∫ a b ∣ f ( x ) ∣ d x = 0 \int_a^b |f(x)|dx =0 abf(x)dx=0, 则 f ( x ) ≡ 0 f(x)\equiv 0 f(x)0

用定积分定义计算数列极限

  • lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n\to \infty} \frac{1}{n} \sum\limits_{i=1}^n f(\frac{i}{n})= \int_0^1 f(x) dx nlimn1i=1nf(ni)=01f(x)dx

  • lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( a + i n ) = ∫ 0 1 f ( a + x ) d x \lim\limits_{n\to \infty} \frac{1}{n} \sum\limits_{i=1}^n f(a+\frac{i}{n})= \int_0^1 f(a+x) dx nlimn1i=1nf(a+ni)=01f(a+x)dx

  • lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( a + i n ( b − a ) ) = ∫ 0 1 f ( a + x ( b − a ) ) d x = 1 b − a ∫ a b f ( z ) d z \lim\limits_{n\to \infty} \frac{1}{n} \sum\limits_{i=1}^n f(a+\frac{i}{n}(b-a))= \int_0^1 f(a+x(b-a)) dx=\frac{1}{b-a} \int_a^b f(z) d z nlimn1i=1nf(a+ni(ba))=01f(a+x(ba))dx=ba1abf(z)dz

可积的充分条件

  • f f f 在区间 [ a , b ] [a,b] [a,b] 上连续则可积
  • f f f 在区间 [ a , b ] [a,b] [a,b] 上单调有界则可积
  • f f f 在区间 [ a , b ] [a,b] [a,b] 只有有限个第一类间断点则可积
  • f f f 在区间 [ a , b ] [a,b] [a,b] 只有可数个第一类间断点则可积

定积分计算

奇函数在0点对称的区间上定积分为0

偶函数在0点对称的区间上定积分为单侧定积分的两倍

周期性

  • ∫ 0 T f ( x ) d x = ∫ a a + T f ( x ) d x \int_0^T f(x) dx= \int_a^{a+T} f(x) dx 0Tf(x)dx=aa+Tf(x)dx

轴对称性 f ( x ) = f ( 2 a − x ) f(x)=f(2a-x) f(x)=f(2ax),

  • ∫ a − t a + t f ( x ) d x = 2 ∫ a a + t f ( x ) d x \int_{a-t}^{a+t} f(x) dx=2\int_a^{a+t} f(x)dx ata+tf(x)dx=2aa+tf(x)dx.
  • a = 0 a=0 a=0 时退化为偶函数

换元法积分上下限变化 ∫ a b f ( x ( t ) ) x ′ ( t ) d t = ∫ x ( a ) x ( b ) f ( x ) d x \int_a^b f(x(t))x'(t) dt= \int_{x(a)}^{x(b)} f(x) d x abf(x(t))x(t)dt=x(a)x(b)f(x)dx

凑元法积分上下限不变 ∫ a b f ( x ( t ) ) x ′ ( t ) d t = ∫ a b f ( x ( t ) ) d x ( t ) \int_a^b f(x(t))x'(t) dt=\int_a^b f(x(t)) d x(t) abf(x(t))x(t)dt=abf(x(t))dx(t)

分部积分法 ∫ a b f ( x ) d g ( x ) = f ( x ) g ( x ) ∣ a b − ∫ a b g ( x ) d f ( x ) \int_a^b f(x)dg(x)= f(x)g(x)|_a^b- \int_a^b g(x) d f(x) abf(x)dg(x)=f(x)g(x)ababg(x)df(x)

牛顿 - 莱布尼兹公式

  • f f f 的原函数是 F F F, f f f [ a , b ] [a,b] [a,b]上 可积, 则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b f(x)dx =F(b)-F(a) abf(x)dx=F(b)F(a)
  • 推论 f ′ f' f [ a , b ] [a,b] [a,b]上 可积, 则 ∫ a b f ′ ( x ) d x = f ( b ) − f ( a ) \int_a^b f'(x)dx =f(b)-f(a) abf(x)dx=f(b)f(a)
  • 推论 F ( b ) = F ( a ) + ( b − a ) ∫ 0 1 f ( a + t ( b − a ) ) d t F(b)=F(a)+(b-a)\int_0^1 f(a+t(b-a)) dt F(b)=F(a)+(ba)01f(a+t(ba))dt

计算 ∫ − 1 1 e x d x \int_{-1}^1 e^x dx 11exdx

from sympy import *
from sympy.interactive import init_printing
init_printing(pretty_print=True) 
x,a=symbols('x,a',real=True)
integrate(exp(x),(x,-1,1)) 

e − e − 1 e-e^{-1} ee1

不定积分

计算方法

导数逆运算 ∫ f ′ ( x ) d x = f ( x ) + C \int f'(x) dx =f(x)+C f(x)dx=f(x)+C

第一换元法 ∫ f ( g ( x ) ) g ′ ( x ) d x = F ( g ( x ) ) + C \int f(g(x))g'(x) dx = F(g(x))+C f(g(x))g(x)dx=F(g(x))+C, f ( u ) f(u) f(u)有原函数 F ( u ) F(u) F(u), u = g ( x ) u=g(x) u=g(x)

第二换元法 ∫ f ( x ) d x = F ( ψ − 1 ( x ) ) + C \int f(x) dx= F(\psi^{-1}(x)) +C f(x)dx=F(ψ1(x))+C, f ( ϕ ( t ) ) ϕ ′ ( t ) f(\phi(t))\phi'(t) f(ϕ(t))ϕ(t)有原函数 F ( t ) F(t) F(t), x = ψ ( t ) x=\psi(t) x=ψ(t)

  • 换正弦 a 2 − x 2 \sqrt{a^2-x^2} a2x2 , x = a sin ⁡ ( t ) x=a\sin(t) x=asin(t)
  • 换正切 a 2 + x 2 \sqrt{a^2+x^2} a2+x2 , x = a tan ⁡ ( t ) x=a\tan(t) x=atan(t)
  • 换正割 x 2 − a 2 \sqrt{x^2-a^2} x2a2 , x = a sec ⁡ ( t ) x=a\sec(t) x=asec(t)
  • 换分式 x − a x − b \sqrt{\frac{x-a}{x-b}} xbxa , t = x − a x − b t=\sqrt{\frac{x-a}{x-b}} t=xbxa , x = b t 2 − a t 2 − 1 x=\frac{bt^2-a}{t^2-1} x=t21bt2a
  • 换倒数 1 x 2 f ( 1 x ) \frac{1}{x^2}f(\frac{1}{x}) x21f(x1), t = 1 x t=\frac{1}{x} t=x1

分部积分 ∫ f ( x ) d g ( x ) = f ( x ) g ( x ) − ∫ g ( x ) d f ( x ) \int f(x) d g(x)= f(x)g(x)-\int g(x) d f(x) f(x)dg(x)=f(x)g(x)g(x)df(x)

  • 反对幂三指
  • 反对幂指三
  • ∫ arcsin ⁡ ( x ) d x = x arcsin ⁡ ( x ) − ∫ x 1 − x 2 d x = x arcsin ⁡ ( x ) + 1 − x 2 \int \arcsin(x)dx =x\arcsin(x)-\int \frac{x}{\sqrt{1-x^2}}dx=x\arcsin(x) +\sqrt{1-x^2} arcsin(x)dx=xarcsin(x)1x2 xdx=xarcsin(x)+1x2
  • 形式变复杂,另选方向

有理函数分解成四种基本型

  • 第一基本型 c 0 x − a \frac{c_0}{x-a} xac0
  • 第二基本型 c 1 ( x − a ) \frac{c_1}{(x-a)} (xa)c1, c 2 ( x − a ) 2 \frac{c_2}{(x-a)^2} (xa)2c2, ⋯ \cdots , c n ( x − a ) n \frac{c_n}{(x-a)^n} (xa)ncn
  • 第三基本型 ( p 2 < 4 q p^2<4q p2<4q) k 0 x + b 0 x 2 + p x + q \frac{k_0x+b_0}{x^2+px+q} x2+px+qk0x+b0,
  • 第四基本型 ( p 2 < 4 q p^2<4q p2<4q) k 1 x + b 1 x 2 + p x + q \frac{k_1x+b_1}{x^2+px+q} x2+px+qk1x+b1, k 2 x + b 2 ( x 2 + p x + q ) 2 \frac{k_2x+b_2}{(x^2+px+q)^2} (x2+px+q)2k2x+b2, ⋯ \cdots , k n x + b n ( x + p x + q ) n \frac{k_nx+b_n}{(x+px+q)^n} (x+px+q)nknx+bn

计算 e x , ln ⁡ ( x ) e^x,\ln(x) ex,ln(x) 的不定积分

from sympy import *
from sympy.interactive import init_printing
init_printing(pretty_print=True) 
x,a=symbols('x,a',real=True)
f=[exp, log]
[integrate(f[i](x),x)  for i in range(2)]   

[ exp ⁡ ( x ) , x log ⁡ ( x ) − x ] [\exp(x),x\log(x)-x] [exp(x),xlog(x)x]

反常积分

无穷积分

无穷积分 ∫ a ∞ f ( x ) d x = lim ⁡ b → ∞ ∫ a b f ( x ) d x \int_a^\infty f(x)dx=\lim\limits_{b\to\infty} \int_a^b f(x) dx af(x)dx=blimabf(x)dx 如果上述极限存在, 称无穷积分收敛; 否则称无穷积分发散

  • I ( a ) = ∫ 1 ∞ 1 x a d x = − 1 a 1 x a − 1 ∣ a ∞ I(a)=\int_1^\infty \frac{1}{x^a} dx = -\frac{1}{a} \frac{1}{x^{a-1}}|_a^\infty I(a)=1xa1dx=a1xa11a, a ≠ 1 a\neq 1 a=1
    I ( 1 ) = ∫ 1 ∞ 1 x d x = ln ⁡ ( x ) ∣ 1 ∞ I(1)=\int_1^\infty \frac{1}{x} dx = \ln(x)|_1^\infty I(1)=1x1dx=ln(x)1
    a > 1 a> 1 a>1 无穷积分 I ( a ) I(a) I(a) 收敛; 当 a ≤ 1 a\leq 1 a1, I ( a ) I(a) I(a) 无穷积分发散

计算无穷积分 ∫ − ∞ ∞ e − x 2 d x \int_{-\infty}^\infty e^{-x^2}dx ex2dx

from sympy import *
from sympy.interactive import init_printing
init_printing(pretty_print=True) 
x,a=symbols('x,a',real=True)
f=exp(-x**2)
integrate(f,(x,-oo,oo))

π \sqrt{\pi} π

定义 ∫ − ∞ ∞ f ( x ) d x = lim ⁡ a → − ∞ ∫ a c f ( x ) d x + lim ⁡ b → + ∞ ∫ c b f ( x ) d x \int_{-\infty}^\infty f(x)dx=\lim\limits_{a\to-\infty} \int_a^c f(x) dx+\lim\limits_{b\to+\infty} \int_c^b f(x) dx f(x)dx=alimacf(x)dx+b+limcbf(x)dx 右侧两个极限都存在,称无穷积分收敛;否则称无穷积分发散

敛散性的判别法

比较判别法* f ( x ) , g ( x ) f(x),g(x) f(x),g(x), 连续函数 g ( x ) ≥ f ( x ) ≥ 0 g(x)\geq f(x)\geq 0 g(x)f(x)0

  • ∫ a ∞ g ( x ) d x \int_a^\infty g(x)dx ag(x)dx 收敛, 则 ∫ a ∞ f ( x ) d x \int_a^\infty f(x) dx af(x)dx 收敛
  • ∫ a ∞ f ( x ) d x \int_a^\infty f(x)dx af(x)dx 发散, 则 ∫ a ∞ f ( x ) d x \int_a^\infty f(x) dx af(x)dx 发散

柯西判别法 lim ⁡ x → + ∞ x p ∣ f ( x ) ∣ = l \lim\limits_{x\to+\infty} x^p|f(x)|=l x+limxpf(x)=l

  • l ∈ [ 0 , + ∞ ) l\in [0,+\infty) l[0,+), p > 1 p>1 p>1, ∫ a ∞ ∣ f ( x ) ∣ d x \int_a^\infty |f(x)|dx af(x)dx 收敛
  • l ∈ ( 0 , + ∞ ] l\in (0,+\infty] l(0,+], p ≤ 1 p\leq 1 p1, ∫ a ∞ ∣ f ( x ) ∣ d x \int_a^\infty |f(x)|dx af(x)dx 发散

条件收敛 v.s. 绝对收敛

∫ a ∞ ∣ f ( x ) ∣ d x \int_a^\infty |f(x)| dx af(x)dx 收敛称反常积分绝对收敛

∫ a ∞ ∣ f ( x ) ∣ d x \int_a^\infty |f(x)|dx af(x)dx 发散, 但 ∫ a ∞ f ( x ) d x \int_a^\infty f(x)dx af(x)dx 收敛,称反常积分条件收敛

反常积分绝对收敛可以推出反常积分收敛, 反之不然

瑕积分

瑕点: 如果 lim ⁡ x → x 0 + f ( x ) = ∞ \lim\limits_{x\to x_0^+} f(x)=\infty xx0+limf(x)=, 称 x 0 x_0 x0 为一个瑕点

  • 瑕积分: ∫ x 0 b f ( x ) d x = lim ⁡ a → x 0 ∫ a b f ( x ) d x \int_{x_0}^b f(x)dx= \lim\limits_{a\to x_0} \int_a^b f(x)dx x0bf(x)dx=ax0limabf(x)dx
    当极限存在时, 称瑕积分收敛, 其中 x 0 x_0 x0 [ x 0 , b ] [x_0,b] [x0,b] 上的唯一瑕点

  • 瑕积分: x 0 ∈ [ a , b ] x_0\in [a,b] x0[a,b] 是唯一瑕点, ∫ a b f ( x ) d x = lim ⁡ c → x 0 − ∫ a c f ( x ) d x + lim ⁡ d → x 0 + ∫ d b f ( x ) d x \int_a^b f(x)dx= \lim\limits_{c\to x_0^-} \int_a^c f(x)dx+\lim\limits_{d\to x_0^+} \int_d^b f(x)dx abf(x)dx=cx0limacf(x)dx+dx0+limdbf(x)dx,
    当右侧两个极限都存在时, 称瑕积分收敛

  • I ( a ) = ∫ 0 1 1 x a d x = − 1 a 1 x a − 1 ∣ 0 1 I(a)=\int_0^1 \frac{1}{x^a} dx = -\frac{1}{a} \frac{1}{x^{a-1}}|_0^1 I(a)=01xa1dx=a1xa1101, a ≠ 1 a\neq 1 a=1
    I ( 1 ) = ∫ 0 1 1 x d x = ln ⁡ ( x ) ∣ 0 1 I(1)=\int_0^1 \frac{1}{x} dx = \ln(x)|_0^1 I(1)=01x1dx=ln(x)01
    a ≥ 1 a\geq 1 a1, 瑕积分 I ( a ) I(a) I(a) 发散; 当 a < 1 a< 1 a<1, I ( a ) I(a) I(a) 收敛

柯西判别法 x 0 x_0 x0 [ x 0 , b ] [x_0,b] [x0,b]上唯一瑕点 lim ⁡ x → x 0 + ( x − x 0 ) a ∣ f ( x ) ∣ = l \lim\limits_{x\to x_0^+} (x-x_0)^a|f(x)|=l xx0+lim(xx0)af(x)=l

  • l ∈ [ 0 , + ∞ ) l\in [0,+\infty) l[0,+), p < 1 p<1 p<1, ∫ x 0 b ∣ f ( x ) ∣ d x \int_{x_0}^b |f(x)|dx x0bf(x)dx 收敛
  • l ∈ ( 0 , + ∞ ] l\in (0,+\infty] l(0,+], p ≥ 1 p\geq 1 p1, ∫ x 0 b ∣ f ( x ) ∣ d x \int_{x_0}^b |f(x)|dx x0bf(x)dx 发散
    计算瑕积分 ∫ 0 1 1 x 2 d x \int_0^1 \frac{1}{x^2} dx 01x21dx
from sympy import *
from sympy.interactive import init_printing
init_printing(pretty_print=True) 
x,a=symbols('x,a',real=True)
integrate(1/x**(1/2),(x,0,1))

2 2 2

混合型反常积分

  • 混合型反常积分 x 0 ∈ [ a , + ∞ ) x_0\in [a,+\infty) x0[a,+) 是唯一瑕点 ∫ x 0 ∞ f ( x ) d x = lim ⁡ a → x 0 + ∫ a c f ( x ) d x + lim ⁡ b → + ∞ ∫ c b f ( x ) d x \int_{x_0}^\infty f(x)dx = \lim\limits_{a\to x_0^+} \int_a^c f(x) dx + \lim\limits_{b\to+\infty} \int_c^b f(x) dx x0f(x)dx=ax0+limacf(x)dx+b+limcbf(x)dx
    当右侧两个极限都存在时称混合型反常积分收敛; 否则成为发散

范数不等式

  • p>q 则 ( ∑ i = 1 n x i p ) 1 p ≤ ( ∑ i = 1 n x i q ) 1 q (\sum_{i=1}^n x_i^p)^{\frac{1}{p}} \leq (\sum_{i=1}^n x_i^q)^{\frac{1}{q}} (i=1nxip)p1(i=1nxiq)q1, 当且仅当 x 1 = x 2 = ⋯ = x n x_1=x_2=\cdots=x_n x1=x2==xn 等号成立

  • p>q 则 ( ∫ a b f ( x ) p d x ) 1 p ≤ ( ∫ a b f ( x ) q ) 1 q d x (\int_{a}^b f(x)^p dx )^{\frac{1}{p}} \leq (\int_{a}^b f(x)^q)^{\frac{1}{q}dx} (abf(x)pdx)p1(abf(x)q)q1dx, 当且仅当 f ( x ) ≡ c , a . e . x ∈ [ a , b ] f(x)\equiv c, a.e. x\in [a,b] f(x)c,a.e.x[a,b] 等号成立

均值不等式

  • p>q 则 ( ∑ i = 1 n x i p n ) 1 p ≥ ( ∑ i = 1 n x i q n ) 1 q (\frac{\sum_{i=1}^n x_i^p}{n})^{\frac{1}{p}} \geq (\frac{\sum_{i=1}^n x_i^q}{n})^{\frac{1}{q}} (ni=1nxip)p1(ni=1nxiq)q1, 当且仅当 x 1 = x 2 = ⋯ = x n x_1=x_2=\cdots=x_n x1=x2==xn 等号成立

  • p>q 则 ( ∫ a b f ( x ) p d x b − a ) 1 p ≥ ( ∫ a b f ( x ) q d x b − a ) 1 q (\frac{\int_{a}^b f(x)^p dx}{b-a})^{\frac{1}{p}} \geq (\frac{\int_{a}^b f(x)^q dx}{b-a}) ^{\frac{1}{q}} (baabf(x)pdx)p1(baabf(x)qdx)q1, 当且仅当 f ( x ) ≡ c , a . e . x ∈ [ a , b ] f(x)\equiv c, a.e. x\in [a,b] f(x)c,a.e.x[a,b] 等号成立

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackPercy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值