牛顿拉普森(Newton-Raphson)解非线性方程组(python,数值积分)

第二十二篇 非线性方程组的牛顿拉普森解

这种方法是基于几个变量的泰勒展开式来求解的。例如,对于两个方程,假设我们展开一个关于根(x1,x2)的猜想的泰勒级数。对于x1方向上的“一小步”Δx1和x2方向上的“一小步”Δx2,一阶泰勒展开为
在这里插入图片描述
其中
在这里插入图片描述
假设(x1+Δx1,x2+Δx2)是方程的根,那么对应f1和f2的值就会为0,上式将会变成
在这里插入图片描述
或者以矩阵形式,左边为雅可比矩阵,其行列式称为“雅可比”。显然,如果雅可比为零,则迭代过程失败,如果它接近零,则收敛速度可能会较慢。
在这里插入图片描述
其中所有函数和导数都在初始猜测值(x1,x2)处取值,因此,对于n个非线性方程组,我们必须求解n个线性方程来求得向量的变化值
在这里插入图片描述
使用上面的值去更新所有的向量
在这里插入图片描述
这个过程不断地重复,直到上面方程的解向量基本不再改变
计算实例:
使用牛顿拉普森法去发现方程在x=1.8和y=0.5附近的根
在这里插入图片描述
首先我们根据下标符号将方程排列成标准形式
在这里插入图片描述
通过上面公式提到的微分形成雅可比矩阵
在这里插入图片描述
在小型的非线性方程组中,很容易得到雅可比矩阵的逆,因此
在这里插入图片描述
第一次迭代
初始猜测值,x1=1.8,x2=0.5,因此
在这里插入图片描述
因此
在这里插入图片描述
第二次迭代,更新值
在这里插入图片描述
因此
在这里插入图片描述
因此
在这里插入图片描述
第三次迭代
更新值
在这里插入图片描述
随着不断迭代Δx1、Δx2→0,就越来越接近根。
程序如下
分为一个主程序和一个检查多个向量收敛的子程序checkit,两个函数程序,分别为函数形式和函数的导数形式。程序中矩阵程法使用,np.dot;矩阵取逆采用np.linalg.inv
主程序:

#非线性方程组的牛顿拉普森法
import numpy as np
import B
n=2;tol=1.0e-5;limit=100
x1=np.zeros((n,
  • 11
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深渊潜航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值