固有频率和屈曲分析,Kx=λM特征值和特征向量求解(python,数值积分)

本文探讨了在固有频率和屈曲分析中遇到的广义特征值问题。通过重排方程,得到特征值方程的等价形式,使用Python进行数值积分来求解。文中介绍了迭代法,特别是利用[L][U]因子加速迭代过程,并提供了主程序及四个子程序的概述,包括检查收敛、因式分解、从前迭代和从后迭代的步骤。
摘要由CSDN通过智能技术生成

第二十八篇 广义特征值问题

通常在工程实践中,在特征值方程的右边会有一个额外的矩阵,导致会编程这种形式
在这里插入图片描述
比如,在固有频率问题和屈曲分析中,[K]是系统的“刚度矩阵”,[M]是系统的“质量”或“几何”矩阵。
通过重新排列上面的方程,可以写出任意一个等价的特征值方程,
在这里插入图片描述
本程序对应最下面方程的最大特征值1/λ,其倒数为前一个方程的最小特征值λ。
对最开始方程进行向量迭代,让λ = 1,并猜测右边的{x}0。矩阵与向量的乘积会得到
在这里插入图片描述
通过求解线性方程组得到{x}∗1的新估计
在这里插入图片描述
当新的{x}∗1被计算出来时,它可以通过除以“最大”分量来达到正交化,从而得到{x}1,并从带回开始方程,重复这个过程直至收敛。由于在整个迭代过程中[K]矩阵不变,通过求得[K]的[L][U]因子,可以更加有效地进行迭代过程。应用之后,就是在每次迭代中从前和从后替换计算{x}∗i,详情可以参看之前的三篇文章,移位取逆迭代移位向量迭代向量迭代
程序如下:
其中有一个主程序,四个子程序,分别为检查收敛的子程序checkit,因式分解的子程序lufac,从前迭代的子程序subfor,从后迭代的子程序subbac。详情可以参看LDLT分解高斯消元
主程序:

#Kx=λMx的向量迭代 
import numpy as np
import B
n=4;tol=1.0e-5;limit=100
lower=np.zeros((n,n))
upper=np.zeros((n,n))
k=np.array([[8,4,-24,0],[4,16,0,4],[-24,0,192,24],[0,4,24,8]],dtype=np.float)
m=np.array([[0.06667,-0.01667,-0.1,0],[-0.01667,0.1333,0,-0.01667],[-0.1,0,4.8,0.1],[0,-0.01667,0.1,0.06667]],dtype=np.float
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深渊潜航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值