DeepSpeed 搭建碰到的问题

 Windows 系统来做一些前沿开发,估计连微软自家的孩子们也都鄙视,在Win 11下搭建Deepspeed 环境,遇到

PS C:\WINDOWS\system32> pip install deepspeed
Collecting deepspeed
  Downloading deepspeed-0.9.0.tar.gz (764 kB)
     ---------------------------------------- 764.8/764.8 kB 530.6 kB/s eta 0:00:00
  Preparing metadata (setup.py) ... error
  error: subprocess-exited-with-error

  × python setup.py egg_info did not run successfully.
  │ exit code: 1
  ╰─> [13 lines of output]
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "C:\Users\xxx\AppData\Local\Temp\pip-install-00r36i09\deepspeed_c2d6830aa4af4aceac78cd26b4dd9a4e\setup.py", line 157, in <module>
          abort(f"Unable to pre-compile {op_name}")
        File "C:\Users\xxx\App

### 安装和配置 Deepspeed #### 环境准备 为了确保顺利安装并运行 Deepspeed,建议先创建一个新的 Python 虚拟环境。这有助于隔离依赖项,防止版本冲突。 ```bash python -m venv deepspeed_env source deepspeed_env/bin/activate # Linux/MacOS deepspeed_env\Scripts\activate # Windows ``` #### 安装 PyTorch 和其他依赖包 Deepspeed 需要与特定版本的 PyTorch 结合工作。通常推荐使用最新稳定版PyTorch来获得最佳兼容性和性能支持[^1]。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 注意上述命令适用于 CUDA 11.3 版本;如果硬件不同,则需调整 URL 中对应的 cuda 版本号以匹配 GPU 的计算能力需求。 #### 安装 Deepspeed 库 通过 pip 可直接获取官方发布的预编译二进制文件,这是最简便的方式之一: ```bash pip install deepspeed ``` 对于希望参与开发或是需要某些特性尚未发布至主分支的情况,可以从源码构建安装: ```bash git clone https://github.com/microsoft/DeepSpeed.git cd DeepSpeed pip install .[all] ``` 完成以上步骤之后便可以在本地环境中导入 `import deepspeed` 并开始利用其功能加速模型训练过程了。 #### 测试安装成功与否 可以通过执行简单的测试脚本来验证安装是否正确无误: ```python import deepspeed print(f'Deepspeed version {deepspeed.__version__}') ``` 当看到输出当前已安装Deepspeed 版本信息即表示一切正常。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值