【Python】一文弄懂Numpy中的深拷贝和浅拷贝

本文详细解读了NumPy中的浅拷贝与深拷贝,通过实例对比展示它们的区别,包括浅拷贝导致的变量共享内存问题,以及深拷贝创建独立副本的特性。还介绍了如何通过is操作判断内存引用,以及浅拷贝和深拷贝在其他数据类型的适用性。
摘要由CSDN通过智能技术生成

1. 引言

深拷贝和浅拷贝是Python中重要的概念,本文重点介绍在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理。
闲话少说,我们直接开始吧!

2. 浅拷贝

2.1 问题引入

我们来举个栗子,如下所示我们有两个数组a和b,样例代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a

print('a =', a)
print('b =', b)

输出如下:

a = [1 2 3]
b = [1 2 3]

此时如果我们对数组a做如下改变,代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a

a [0] = 42

print('a =', a)
print('b =', b)

那么我们的问题为: 此时b的值应该为多少?
运行上述代码后,我们得到输出如下:

a = [42 2 3]
b = [42 2 3]

2.2 问题剖析

也许有人会觉得输出应该为a=[42 2 3]b=[1 2 3] ,但是运行上述代码后我们发现ab的值均发生了相应的改变。这主要是由于在Numpy中对变量的赋值操作,实际上发生的为浅拷贝。
换句话说,此时两个变量指向同一块内存地址,如下所示:
在这里插入图片描述
所以,此时如果我们修改数组original_array中的某个元素,copy_array 由于和original_array公用同一块内存,所以其中的元素也会发生相应的变化。

3. 深拷贝

3.1 举个栗子

如果我们想要对Numpy数组执行深拷贝,此时我们可以使用函数copy()。相关的样例代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a.copy()

print('a =', a)
print('b =', b)

输出如下:

a = [1 2 3]
b = [1 2 3]

此时,如果我们改变数组a中的元素,代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a.copy()

a [0] = 42

print('a =', a)
print('b =', b)

此时的代码输出如下:

a = [42 2 3]
b = [1 2 3]

3.2 探究原因

观察上述输出,我们可以清楚地看到数组a发生了改变而数组b没有发生变化,这是由于我们使用了深拷贝。此时的内存地址如下:
在这里插入图片描述
由于 original_arraycopy_array指向不同的内存地址空间,所以此时我们对original_array的改变并不会对copy_array带来影响。

4. 技巧总结

经过上述对深拷贝和浅拷贝的举例和示例,相信大家都已有了清晰的认识,接着我们对上述知识点进行总结,归纳如下:

4.1 判断是否指向同一内存

如果我们需要知道两个变量是否指向同一块内存地址,我们可以方便地使用is操作。

浅拷贝示例:

a = np.array([1, 2, 3])
b = a
print(b is a)

输出如下:

True

深拷贝示例:

a = np.array([1, 2, 3])
b = a.copy()
print(b is a)

输出如下:

False

4.2 其他数据类型

尽管本文中所有的示例都使用了NumPy数组,但本文中所涉及的知识也适用于Python中的列表和字典等其他数据类型。

总之,我们需要时刻记载心中:在浅拷贝中,原始数组和新的数组共同执行同一块内存;同时在深拷贝中,新的数组是原始数据的单独的拷贝,它指向一块新的内存地址。

5. 总结

本文重点介绍了Python中对Numpy数组操作的浅拷贝和深拷贝的概念和背后的原理,同时给出了相应的代码示例。

您学废了吗?

在这里插入图片描述
关注公众号《AI算法之道》,获取更多AI算法资讯。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵卓不凡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值