牛顿迭代法和线性近似

牛顿迭代法和线性近似使用的核心公式是相同的:

f(a)=dfdx=limxaf(x)f(a)xa

如果已知x,求 f(x) 的值,移向得:
f(x)=f(a)+f(a)(xa)

实际上就是泰勒展开式展开到一次项,即线性近似。
如果已知 f(x)=0 ,求解x。同样移向得:
x=a+f(x)f(a)f(a)

f(x)=0 带入,得到 x=af(a)f(a) ,通过不断将计算后的 x 值替代a,即牛顿迭代法:
xn+1=xnf(n)f(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值