线性代数学习笔记(三)

课程九

  • 线性无关。
    1. 对于向量$x_1, x_2, …, x_n除了零组合以外没有线性组合可以得到零向量,则这些向量线性无关。
    2. 如果 v1,v2,...,vn 为矩阵A中的列向量,如果A的零空间仅为零向量,则这些向量线性无关。如果存在非零向量 c 使得Ac=0,则这些向量线性相关。
  • 张成空间。向量 v1,v2,...,vn 张成空间,包含这些向量的所有线性组合。
  • 基。向量空间的基是拥有两个特性的一系列向量 v1,v2,...,vn
    1. 线性无关
    2. 张成空间
  • 对于给定的向量空间,任意基的向量个数是确定的。也就是空间的维数。
    向量空间 Rn ,如果 n×n 矩阵可逆,则矩阵的向量为一组基。
    矩阵的秩是矩阵的列向量空间的维数。
    自由变量的数量是矩阵的零空间的维数。

课程十

  • 4个子空间
    列向量空间 C(A) in Rm
    零空间 N(A) in Rn
    行向量空间 C(AT) in Rn
    左零空间 N(AT) in Rm
  • 空间的维数与基
    1. C(A) 的维数等于矩阵 A 的秩。
    2. C(AT)的维数等于矩阵 A 的秩。
    3. Ax=0的特殊解是 N(A) 的基。 N(A) 的维数为 nr
    4. N(AT) 的维数为 mr
      rref[Am×nIm×m][Rm×nEm×m]

      通过Gauss-Jordan增广矩阵消元,我们可以得到什么样的变化使得行向量的线性组合为0,即左零空间的基。
  • 新的向量空间。所有 3×3 矩阵组成向量空间 M
    把矩阵看成向量。符合加法和数乘的规则。
    M的子空间有:上三角矩阵,对称矩阵,对角矩阵。对角矩阵空间的维数为3。将 Rn 扩展到了 Rn×n

课程十一

  • 矩阵空间的基。
    3×3 矩阵的空间,维数为9。
    3×3 对称矩阵的空间,维数为6。
    3×3 上三角矩阵的空间,维数为6。
  • 子空间的交集仍为子空间。维数的关系:
    Dim(S)+Dim(U)=Dim(SU)+Dim(S+U)
  • 没有向量的向量空间。考虑微分方程
    d2ydx2+y=0

    解有 y=cosx,sinx ,该空间的一组基为 cosx,sinx ,所有解为 y=c1cosx+c2sinx 。此处,函数不是向量,但符合规则。线性代数的思想要比矩阵表现形式更广。
  • 秩为1的矩阵。
  • 秩为a的矩阵与秩为b的矩阵相加,秩不一定为a+b。
  • 设S为 R4 的所有满足 v1+v2+v3+v4=0 的v。
    1. S是子空间。
    2. S是矩阵 A=[1111] 的零空间,维数为n-r。
      C(A)=R1N(AT)={0}
  • 小世界图。

课程十二

  • 图。节点与边。
  • 关联矩阵。
    每一行代表一条边。
    用列编号表示节点。
    -1表示边起点,1表示边的终点。
    A=10110110000110100011

    Ax=0 ,设x= x1x2x3x4 ,则 x2x1x3x2x3x1x4x1x4x3=00000 ,在电学中,即各点间的电势差。当我们将某个节点接地(确定其电势),我们可以求得其他节点的电势。这代表去除某一列后,其他三列的列向量线性无关。
    ATy=0 ,KCL科尔霍夫电流定律。 N(AT) 的维数是m-r。
  • 行空间。相关性源于回路。
  • 树。没有回路的图。
  • 维度公式。 Dim N(AT)=mr
    欧拉公式可以从线性代数中推导出: #nodes#edges+#loops=1 ,对任意图都成立。
  • ATCAx=f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值