线性代数学习笔记(二)

课程六

  • 列空间 C(A)
    A 的所有列向量的线性组合组成列空间。
    子空间的交集仍然是子空间。
    Ax=b是否有解的一种解释是:b必须在A的列空间中,即存在A的列向量的线性组合等于b。
    假设 A m×n的矩阵,m > n,则在这种解释下, A 是向量空间Rn的子空间, Ax=b 是否有解取决于向量 b 是否在A的列空间中。
    A n×n的矩阵(方阵),且 A 的各列线性无关时,A的向量空间占满整个 Rn ,b为任何向量 Ax=b 皆有解。
  • 零空间 N(A)
    使 Ax=0 的所有列向量 x 组成A的零空间。
    零空间必定包含零向量。
    零空间之所以为向量空间,因为其中的任意向量的数乘和加法仍然在向量空间内。

课程七

  • 消元
    1232462682810100200222244100200220240=U
  • 秩(Rank)
    消元后主元(pivot)的数目
  • 自由变量与特殊解
    无法通过消元得到主元的列是自由变量(自由列)。
    自由变量可以赋任意值。
    通常,通过设置自由变量中的任意一个为1,其他为0,得到一个解。变换赋值1的变量,得到其他解。
    零空间为这些解的所有线性组合。
  • 秩与主元
    秩(r)就是主元的个数。自由变量的个数为 nr
  • 简化行阶梯形式(Reduced Row Echelon Form)
    100200220240100200020240100200010220=R
  • 通过 Rx=0 求解 Ax=0
    R=[I0F0]x=[FI]

课程八

  • 增广矩阵
    1232462682810b1b2b3100200220240b1b22b1b3b2b1

    Ax=b 有解的条件是 b3b2b1=0
  • Ax=b 有解的两种描述
    b 在列空间C(A)
    如果A的行向量的的某个线性组合得到了零向量,b的相同的组合也必须给出0
  • Ax=b 的所有解
    1. 设置所有自由变量为0,解出所有主变量,得到特解。
    2. 解出零向量空间。
    3. 所有解为特解加上零空间。
  • A m×n矩阵,秩为 r ,有rm,rn
    1. 列满秩 r=n 时,自由变量个数为0, N(A)=0 ,如果存在解,解唯一。(有0个或1个解)
    2. 行满秩 r=m 时,对任意b都有解。自由变量有n-r个。
    3. r=m=n 时,矩阵可逆, R=I ,有唯一解。
    4. r=n<m 时, R=[I0] ,有0或1个解。
    5. r=m<n 时, R=[IF] , 有无穷多解。
    6. r<m,r<n R=[I0F0] ,有0个解或无穷多解。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值