费曼学习法 · 元宇宙趋势· 知识库 · 知识图谱 · 推荐引擎
shadow :
从2018年起,我就一直在琢磨知识引擎。应该如何实现适合自己的知识引擎?最近,了解到不少数字内容的消费场景,我认为知识引擎应该被结合到数字内容的消费场景里。这样的学习才有了输出,有点Learn2earn的感觉。
#
Meta 数字服装店
小红书 R-space
#
超级QQ秀
虚拟空间
超级 QQ 秀
把虚幻引擎塞到了QQ里,用户可以捏脸、换装、拍同款,同时还能拥有自己的虚拟空间,通过买卖各种虚拟商品来装饰自己的虚拟空间。
QQ 频道
一种新的娱乐协作方式,用户可以通过QQ频道找到来自不同地点、从事不同职业,但有着共同爱好,在共同频道里聊天、直播、创作……
关于 Learn2earn ,很像费曼学习法:
费曼学习法 :
在一个需要向别人传授的场景中Teach - 以教代学。用他人能够理解的方式和最简单的语言,向不熟悉该知识的人解释这些知识。
如何把费曼学习法,变成一种软件系统?
在构建知识引擎的过程,我意识到数据才是核心,最早是通过类似于爬虫的方式,广泛索引各种信息,但是太宽泛了,这种方式构建的知识引擎,不太好用。于是,我同时建设了知识库。
动态更新,我一有空就整理知识,打上标签,通过标签整理、更新知识,积累了大量的标签。通过标签分类的内容,覆盖了:产品应用、文档、研报、趋势、论文、案例、开源代码、演讲稿、PPT文件等各类资料。
目前已经积累了1913条的数据,需要进入下一个阶段了。升级第一步:标签系统整理并开源,以图谱的方式展示,进一步帮助用户拓展知识点。
shadow :
在2021/9/24 我记录了一条思考:去传统的专家、龙头企业、头部力量,为新兴领域寻找机会点。颠覆传统媒体的商业模式,提供一种全新的社交媒体体验,不是因为需求在哪要去解决,而是可以提供什么样的社交媒体体验,用户来体验,从而创造价值。
数字化,基于知识引擎的内容整合。碎片化,自动化整理碎片化聊天社交产生的内容。可编程经济?交换什么价值?整合工作流。
ML686 :
最近刚手动改造了一下这些APP推荐的权重。感觉这种推荐算法,用久了内容非常的同质化,内卷过度,根本没有「 新鲜血液 」进入,我是手动给原本经常看的内容都点了「 不推荐内容/不喜欢 」,把这些权重重新打乱之后,才有了新内容进来 关于知识引擎,感觉除了「 我订阅的 」,也可以少量加入有一些「 我未关注的领域 」,「 非惯用领域 」之类的,有时候跨领域的知识,在未来的某个时候会非常管用。
shadow :
好建议!这个分类也蛮清晰,需要传达给用户。
opus :
欢迎加入#知识引擎研究小组,一起探索适合自己的知识库产品。
备注:知识引擎
活动推荐