从图片中提取tag#MOAT,ComfyUI-WD14-Tagger

f659ce621a5be84a951fe343b193d90a.png

github.com/pythongosssss/ComfyUI-WD14-Tagger

从图片中提取tag,ComfyUI-WD14-Tagger 使用了4种模型:

最新的模型 MOAT

最受欢迎的模型 ConvNextV2

主要任务是进行语义分割 —— 一项计算机视觉任务,其目标是将图像中的每个像素分类为一个类别或对象。其目标是生成一张图像的密集像素级分割地图,其中每个像素被分配给一个特定的类别或对象。

MOAT

54ad6bdd00a97d0cd495e31cd5701678.jpeg

一种名为MOAT的神经网络,它建立在MOBILE CONVOLUTION和ATTENTION的基础上。与当前的工作不同,MOAT将MBConv block (2018) 和Transformer block (2017) 合并为一个MOAT block。

实验结果表明,MOAT网络取得了出色的性能。

主要有以下几种任务:

ImageNet-1K图像分类任务

COCO对象检测任务

实例分割任务

ADE20K语义分割任务

MOAT在这些任务上都取得了令人印象深刻的结果,并展示了其在不同识别任务中的适用性。

e0e19dc14dae1555442b2fe05db89cd5.jpeg

谷歌 DeepLab2

A TensorFlow Library for Deep Labeling

MOAT是基于 DeepLab2 代码库开发的,可以直接通过Deeplab使用。DeepLab2是一个用于深度标记的TensorFlow库,旨在为图像像素标记任务提供统一和最先进的TensorFlow代码库,包括语义分割、实例分割、全景分割、深度估计甚至视频全景分割等。

github.com/google-research/deeplab2

更多欢迎关注:

ComfyUI中文社区#文档汉化内测

全新的创作方式等你来探索!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值