领取,送500w Tokens的DeepSeek V2和15元代金券的Kimi

‍最近Kimi和DeepSeek V2火爆中国科技圈,你有没有想过自己动手尝试使用它们做点有趣的事情?例如翻译文章、总结Youtube视频、总结文章、提取知识、制作思维导图等等?并且把这些知识保存到自己的知识库里?

话不多说,我们直接进入正题。

首先,你需要下载MiX Copilot。MiX Copilot是一个高效的AI工作台,旨在提升您的工作和思考效率。它集成了多LLM和Agent交互框架,能够自动爬取网页数据、RSS、arXiv论文和Youtube视频,让你轻松接入最新信息和学术资源。借助强大的AI分析和翻译功能,MiX Copilot帮你在信息海洋中快速找到珍贵资料,跨越语言障碍。更有多Tab机制和丰富的自定义选项,支持并行任务处理和个性化设置,让你的工作流更加流畅高效。下载链接是:https://www.mix-copilot.com/,也可以看下方的保姆级教程。

第二,设置对应的API

  1. 获取对应API Key。

    1. Kimi的链接是https://platform.moonshot.cn/console/api-keys

    2. DeepSeek-V2的链接是https://platform.deepseek.com/api_keys

2. 打开MiX Copilot设置→LLM设置页面

d06440fc7fa597d80045f51a27af9ad4.png

3. 在API EndPoint URL填写Kimi链接:https://api.moonshot.cn ,或者DeepSeek-V2链接:https://api.deepseek.com

4. 填写API Key(很长的字符串,例如fk198550-qSymly…)

5. 在AI模型填写模型,kimi的模型分别是moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k,DeepSeek-V2的模型是deepseek-chat

6. 点击“更新”,出现“当前可用”说明连接成功。

PS. DeepSeek-V2是100w Tokens/元,具有32k上下文长度,注册立即获得500w Tokens,非常值!

f4bef390aeeec2d0326ee78642b60383.png

而Kimi注册即送15元代金券

ddb2c10907f1839f061b3bdea1b14168.png

模型的价格如下:

e7723cf2d7399686f2a946133f707cfe.png

第三,制作Agent,可以点击Agents→创建Agent

5d3c5e9ea14fc689c5367d015fbac097.png

146a26e6ba7a78ef0eb4b69395063a7e.png

最后,如果你想使用我们已经制作好的Agent,可以看下方教程申请试用一个月。

6e83ed0d80a31c469e4634e731ab2c7e.png

0822d98d0e165210656b8025f6b96329.png

68121ca8d426899e8bae5efd43f3f753.png

(保姆级)MiX Copilot 3.5 下载、安装和申请试用教程

1ec7aa9ad88360b4d7b192c6368e9682.jpeg

申请试用名额

79af0b595d5110b99d34949fca8835b9.jpeg

备注:社群


### DeepSeekKimi大模型的差异对比 #### 性能特点 DeepSeek系列模型以其高效性灵活性著称,在多种自然语言处理任务上表现出色。这些模型通过先进的架构设计大规模数据集预训练,能够提供高质量的语言理解生成能力[^3]。相比之下,Kimi模型则强调简化技术栈的同时保持高性能的表现。具体而言,Kimi已经验证了即使不采用复杂的辅助方法如蒙特卡洛树搜索、价值函数以及过程奖励模型等,依然可以达到卓越的效果[^1]。 在优化策略方面,针对大型神经网络训练过程中可能出现的问题,比如数值溢出或者更新不稳定等情况,研究者们提出了有效的解决方案。例如对于Muon优化器所遇到的大规模训练难题——即随着迭代次数增加而导致的RMS持续增长现象,采取了诸如加入权重衰减项来控制范数大小,并动态调节各参数组别的学习率比例等方式加以应对[^2]。 #### 应用场景分析 基于上述特性,我们可以推测两者适合的应用领域有所不同: - **DeepSeek** 更倾向于那些需要高度精确度的任务环境当中去部署实施,例如专业文档摘要提取、法律条款解析等领域内的应用开发工作可能会优先考虑选用该类算法框架作为技术支持基础; - 而 **Kimi** 则更适合于资源受限条件下但仍需维持较高水准输出质量的情形下被采纳利用,像移动设备端上的即时通讯聊天机器人服务或者是嵌入式物联网装置内部集成的人工智能模块等功能实现就非常适合运用此类轻量化却又不失效能优势的产品形态来进行构建扩展。 此外值得注意的是尽管二者都具备良好的泛化迁移潜力但由于各自侧重方向存在差异所以在实际选型决策环节还需综合考量项目需求细节才能做出最佳判断结论。 #### 支持功能概述 从支持的功能角度来看,两款产品也都各有千秋: - 对于 **DeepSeek**, 它可能提供更多样化的API接口选项供开发者调用定制专属业务逻辑流程, 同时也可能内置更加丰富的预定义模板样式方便快速搭建原型测试环境; - 反观 **Kimi**, 或许会在易用性层面做更多文章力求降低初次使用者的学习成本曲线坡度, 并且极有可能围绕其核心竞争力打造一系列配套工具链帮助加速整个开发生命周期进程. 综上所述,虽然这两种类型的AI语言模型都能够很好地完成各自的使命职责所在之处发挥重要作用贡献力量但是它们之间确实存在着一些本质区别值得我们深入探讨了解以便更好地服务于未来的科技创新与发展之路。 ```python # 示例代码展示如何加载并使用一个Hugging Face Transformers库中的预训练模型 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-cx40b") model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-cx40b") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值