[MIT]微积分重点 第十七课 六函数、六法则和六定理 学习笔记

1.六函数

积分六函数导数
x n + 1 / ( n + 1 ) x^{n+1}/(n+1) xn+1/(n+1) x n x^n xn n x n − 1 nx^{n-1} nxn1
− cos ⁡ x -\cos x cosx sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx
sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx − sin ⁡ x -\sin x sinx
e c x / c \rm e^{cx}/c ecx/c e c x \rm e^{cx} ecx c e c x c\rm e^{cx} cecx
x ln ⁡ x − x x\ln x - x xlnxx ln ⁡ x \ln x lnx 1 / x 1/x 1/x
斜坡函数
Ramp function
阶跃函数
Step function
冲激函数
Delta function

ln ⁡ x \ln x lnx 的积分教授使用“易得法”获得,事实上使用分部积分法更清晰。
阶跃函数是不连续函数,其积分为斜坡函数,导数为冲激函数(又名狄拉克 δ \delta δ 函数)。冲激函数在其他处为 0 0 0 ,某一点突然变为无穷大,该点处的面积为 1 1 1
在这里插入图片描述

2.六法则

  1. 加法法则: a f ( x ) + b g ( x ) af(x)+bg(x) af(x)+bg(x) 的导数为
    a d ⁡ f d ⁡ x + b d ⁡ g d ⁡ x a\frac{\operatorname{d}f}{\operatorname{d}x} + b\frac{\operatorname{d}g}{\operatorname{d}x} adxdf+bdxdg

  2. 乘法法则: f ( x ) g ( x ) f(x)g(x) f(x)g(x) 的导数为
    d ⁡ f d ⁡ x g ( x ) + f ( x ) d ⁡ g d ⁡ x \frac{\operatorname{d}f}{\operatorname{d}x}g(x) + f(x)\frac{\operatorname{d}g}{\operatorname{d}x} dxdfg(x)+f(x)dxdg

  3. 除法法则: f ( x ) / g ( x ) f(x)/g(x) f(x)/g(x) 的导数为
    ( d ⁡ f d ⁡ x g − f d ⁡ g d ⁡ x ) / g 2 \left(\frac{\operatorname{d}f}{\operatorname{d}x}g - f\frac{\operatorname{d}g}{\operatorname{d}x}\right)/{g^2} (dxdfgfdxdg)/g2

  4. 链式法则: f ( g ( x ) ) y = g ( x ) f(g(x)) \quad y=g(x) f(g(x))y=g(x) 的导数为
    d ⁡ f d ⁡ y d ⁡ y d ⁡ x \frac{\operatorname{d}f}{\operatorname{d}y}\frac{\operatorname{d}y}{\operatorname{d}x} dydfdxdy

  5. 逆函数法则: x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 的导数为(逆函数的导数为原函数导数分之一)
    d ⁡ x d ⁡ y = 1 d ⁡ y / d ⁡ x \frac{\operatorname{d}x}{\operatorname{d}y}=\frac{1}{\operatorname{d}y/\operatorname{d}x} dydx=dy/dx1

  6. 洛必达法则: 当 x → a x\rightarrow a xa f ( x ) → 0 f(x)\rightarrow 0 f(x)0 g ( x ) → 0 g(x)\rightarrow 0 g(x)0 时,如何求 f ( x ) / g ( x ) f(x)/g(x) f(x)/g(x)
    lim ⁡ x → a f ( x ) g ( x ) = d ⁡ f / d ⁡ x d ⁡ g / d ⁡ x = f ′ ( x ) g ′ ( x ) \lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\operatorname{d}f/\operatorname{d}x}{\operatorname{d}g/\operatorname{d}x}=\frac{f'(x)}{g'(x)} xalimg(x)f(x)=dg/dxdf/dx=g(x)f(x)
    在这里插入图片描述

3.六定理

  1. 微积分的第一基本定理,它表示两种运算间的关系,从函数一到函数二是求导:
    f ( x ) = ∫ a x s ( t ) d ⁡ t 导 数 为 d ⁡ f d ⁡ x = s ( x ) f(x)=\int^x_a s(t)\operatorname dt \quad 导数为 \quad \frac{\operatorname{d}f}{\operatorname{d}x}=s(x) f(x)=axs(t)dtdxdf=s(x)

  2. 微积分的第二基本定理,它表示两种运算间的关系,从函数二到函数一是积分:
    d ⁡ f d ⁡ x = s ( x ) 积 分 为 f ( x ) = ∫ a b s ( x ) d ⁡ x = f ( b ) − f ( a ) \frac{\operatorname{d}f}{\operatorname{d}x}=s(x) \quad 积分为 \quad f(x)=\int^b_a s(x)\operatorname dx=f(b)-f(a) dxdf=s(x)f(x)=abs(x)dx=f(b)f(a)

  3. 全值定理
    假设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 内连续,在该区间内 f ( x ) f(x) f(x) 可以取到的最大值为 M M M ,最小值为 m m m ,那么 f ( x ) f(x) f(x) 可以取到 M M M m m m 之间的所有值。
    在这里插入图片描述

  4. 中值定理:
    假设函数 f f f 在闭区间 [ a , b ] [a,b] [a,b] 内连续,在开区间 ( a , b ) (a,b) (a,b) 内可导,那么在开区间 ( a , b ) (a,b) (a,b) 内至少有一点 c c c 使得:
    f ′ ( c ) = f ( b ) − f ( a ) b − a f'(c)=\frac{f(b)-f(a)}{b-a} f(c)=baf(b)f(a)

  5. 泰勒级数
    f f f 关于 x = a x=a x=a 的泰勒级数:
    f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + f ( 4 ) ( a ) 4 ! ( x − a ) 4 + ⋯ = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n \begin{aligned} f(x) &= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \frac{f^{(4)}(a)}{4!}(x-a)^4 +\cdots \\[2ex] &= \sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!}(x-a)^n \\[2ex] \end{aligned} f(x)=f(a)+f(a)(xa)+2!f(a)(xa)2+3!f(a)(xa)3+4!f(4)(a)(xa)4+=n=0n!f(n)(a)(xa)n
    如果在 ( x − a ) n (x-a)^n (xa)n 后截断,那么误差为 f n + 1 ( c ) ( x − a ) n + 1 / ( n + 1 ) ! f^{n+1}(c)(x-a)^{n+1}/(n+1)! fn+1(c)(xa)n+1/(n+1)! 。( c c c a a a x x x 之间的数)
    在这里插入图片描述

  6. 二项式定理
    二项式公式为(帕斯卡三角):
    ( 1 + x ) 1 1 + 1 x ( 1 + x ) 2 1 + 2 x + 1 x 2 ( 1 + x ) 3 1 + 3 x + 3 x 2 + 1 x 3 ( 1 + x ) 4 1 + 4 x + 6 x 2 + 4 x 3 + 1 x 4 ⋯ \begin{aligned} &(1+x)^1 \qquad\qquad 1+1x\\ &(1+x)^2 \qquad\quad 1+2x+1x^2 \\ &(1+x)^3 \qquad 1+3x+3x^2+1x^3\\ &(1+x)^4 \quad 1+4x+6x^2+4x^3+1x^4\\ &\cdots \\ \end{aligned} (1+x)11+1x(1+x)21+2x+1x2(1+x)31+3x+3x2+1x3(1+x)41+4x+6x2+4x3+1x4
    将二项式 f ( x ) = ( 1 + x ) p f(x)=(1+x)^p f(x)=(1+x)p p p p 为正整数)用泰勒公式展开:
    f ( n ) ( x ) = ( 1 + x ) p p ( 1 + x ) p − 1 p ( p − 1 ) ( 1 + x ) p − 2    ⋯ f ( n ) ( 0 ) = 1 p p ( p − 1 ) ⋯ \begin{aligned} f^{(n)}(x) &= (1+x)^p\quad p(1+x)^{p-1}\quad p(p-1)(1+x)^{p-2}\quad\;\cdots \\ f^{(n)}(0) &= \qquad 1\quad \qquad\qquad p\quad \qquad\qquad p(p-1)\quad\qquad\cdots \\ \end{aligned} f(n)(x)f(n)(0)=(1+x)pp(1+x)p1p(p1)(1+x)p2=1pp(p1)
    除以 n ! n! n! 发现,泰勒展开的系数与二项公式的系数相同!
    1 n ! f ( n ) ( 0 ) = p ( p − 1 ) ⋯ ( p − n + 1 ) n ( n − 1 ) ⋯ 1 = p ! ( p − n ) ! n ! = ( p n ) ( 1 + x ) p = 1 + p x + p ( p − 1 ) 2 × 1 x 2 + p ( p − 1 ) ( p − 1 ) 3 × 2 × 1 x 3 + ⋯ \frac{1}{n!}f^{(n)}(0)=\frac{p(p-1)\cdots(p-n+1)}{n(n-1)\cdots 1}=\frac{p!}{(p-n)!n!} = \begin{pmatrix} p \\ n \\ \end{pmatrix} \\[2ex] (1+x)^p = 1 + px + \frac{p(p-1)}{2\times 1}x^2 + \frac{p(p-1)(p-1)}{3\times 2\times 1}x^3 + \cdots \\[2ex] n!1f(n)(0)=n(n1)1p(p1)(pn+1)=(pn)!n!p!=(pn)(1+x)p=1+px+2×1p(p1)x2+3×2×1p(p1)(p1)x3+
    但是,泰勒级数与二项公式有什么区别呢?二项公式只能求正整数次幂的系数,但是如果指数扩展到实数,二项公式就不起作用了,泰勒级数依然可用。这就是微积分能做的事!
    在这里插入图片描述

PS:此时,已将《普林斯顿微积分读本》看了大半,本以为自己学的差不多了,再回头看,其实不过入了个门。做题时会发现自己连概念都没有理清。又转念一想,如果看个视频就能学会,是不是太草率了,该笔记能够起到抛砖引玉的作用也是极好的。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值