[MIT]微积分重点 第十四课 幂级数和欧拉公式 学习笔记

本文探讨了幂级数与泰勒级数的概念,特别是在x=0处的展开。通过泰勒级数,我们可以用无穷级数表示函数,例如ex、sinx和cosx的泰勒展开式。此外,还介绍了欧拉公式,利用复数i将指数函数与三角函数联系起来,即eix=cosx+i*sinx。通过这些展开,我们可以更好地理解函数的性质,并在特定情况下进行近似计算。
摘要由CSDN通过智能技术生成

1.幂级数和泰勒级数

x = a x=a x=a 时的一般幂级数为:
∑ n = 0 ∞ a n ( x − a ) n = a 0 + a 1 ( x − a ) + a 2 ( x − a ) 2 + a 3 ( x − a ) 3 + ⋯ \sum_{n=0}^{\infin} a_n(x-a)^n = a_0 + a_1(x-a) + a_2(x-a)^2 + a_3(x-a)^3 +\cdots n=0an(xa)n=a0+a1(xa)+a2(xa)2+a3(xa)3+
下面将讨论关于 x = 0 x=0 x=0 的幂级数,为:
∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯ \sum_{n=0}^{\infin} a_nx^n = a_0 + a_1x + a_2x^2 + a_3x^3 +\cdots n=0anxn=a0+a1x+a2x2+a3x3+
可以用幂级数构造 f ( x ) f(x) f(x) ,需要找到一些 a a a 来匹配在 x = 0 x=0 x=0 处的 f ( 0 ) f(0) f(0) f ′ ( 0 ) f'(0) f(0) f ′ ′ ( 0 ) f''(0) f(0) f ′ ′ ′ ( 0 ) ⋯ f'''(0)\cdots f(0) ,这就是泰勒级数。
f f f 关于 x = 0 x=0 x=0 的泰勒级数:
∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + f ( 4 ) ( 0 ) 4 ! x 4 + ⋯ \sum_{n=0}^{\infin} \frac{f^{(n)}(0)}{n!}x^n = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 +\cdots n=0n!f(n)(0)xn=f(0)+f(0)x+2!f(0)x2+3!f(0)x3+4!f(4)(0)x4+
在这里插入图片描述

例:使用泰勒级数展开 e x {\rm e}^x ex
f ( x ) = e x f(x)={\rm e}^x f(x)=ex 所有的导数在 x = 0 x=0 x=0 处都为 1 1 1 ,所以:
f ( x ) = e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ + 1 n ! x n f(x) = {\rm e}^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots + \frac{1}{n!}x^n f(x)=ex=1+x+2!1x2+3!1x3++n!1xn
这里总结下使用泰勒级数展开的系统性方法:求各阶导,代入 0 0 0 ,求各阶导在 0 0 0 处的值后再代入泰勒级数。
在这里插入图片描述

例:使用泰勒级数展开 sin ⁡ x \sin x sinx
f ( x ) = sin ⁡ x f ′ ( x ) = cos ⁡ x f ′ ′ ( x ) = − s i n ( x ) f ′ ′ ′ ( x ) = − cos ⁡ x f ( 4 ) ( x ) = sin ⁡ x f ( 5 ) ( x ) = cos ⁡ x f ( 6 ) ( x ) = − s i n ( x ) f ( 7 ) ( x ) = − cos ⁡ x ⋯ 发 现 4 个 一 个 循 环 f ( 0 ) = 0   f ′ ( 0 ) = 1 f ′ ′ ( 0 ) = 0 f ′ ′ ′ ( 0 ) = − 1 f ( 4 ) ( 0 ) = 0   f ( 5 ) ( 0 ) = 1 f ( 6 ) ( 0 ) = 0 f ( 7 ) ( 0 ) = − 1 ⋯ f ( x ) = sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 − 1 7 ! x 7 ⋯ f(x) = \sin x \quad f'(x) = \cos x \quad f''(x) = -sin(x) \quad f'''(x) = -\cos x \quad f^{(4)}(x) = \sin x \quad f^{(5)}(x) = \cos x \quad f^{(6)}(x) = -sin(x) \quad f^{(7)}(x) = -\cos x \quad\cdots发现4个一个循环 \\[2ex] f(0) = 0 \qquad\ f'(0) = 1 \qquad\quad f''(0) = 0 \qquad\qquad f'''(0) = -1 \qquad\quad f^{(4)}(0) = 0 \qquad\ f^{(5)}(0) = 1 \qquad\quad f^{(6)}(0) = 0 \qquad\qquad f^{(7)}(0) = -1 \qquad\cdots \\[2ex] f(x) = \sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7\cdots \\[2ex] f(x)=sinxf(x)=cosxf(x)=sin(x)f(x)=cosxf(4)(x)=sinxf(5)(x)=cosxf(6)(x)=sin(x)f(7)(x)=cosx4f(0)=0 f(0)=1f(0)=0f(0)=1f(4)(0)=0 f(5)(0)=1f(6)(0)=0f(7)(0)=1f(x)=sinx=x3!1x3+5!1x57!1x7
在这里插入图片描述

例:使用泰勒级数展开 cos ⁡ x \cos x cosx
f ( x ) = cos ⁡ x f ′ ( x ) = − s i n ( x ) f ′ ′ ( x ) = − cos ⁡ x f ′ ′ ′ ( x ) = sin ⁡ x f ( 4 ) ( x ) = cos ⁡ x f ( 5 ) ( x ) = − s i n ( x ) f ( 6 ) ( x ) = − cos ⁡ x f ( 7 ) ( x ) = sin ⁡ x ⋯ 通 样 4 个 一 个 循 环 f ( 0 ) = 1   f ′ ( 0 ) = 0 f ′ ′ ( 0 ) = − 1 f ′ ′ ′ ( 0 ) = 0 f ( 4 ) ( 0 ) = 1   f ( 5 ) ( 0 ) = 0 f ( 6 ) ( 0 ) = − 1 f ( 7 ) ( 0 ) = 0 ⋯ f ( x ) = cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − 1 6 ! x 6 ⋯ f(x) = \cos x \quad f'(x) = -sin(x) \quad f''(x) = -\cos x \quad f'''(x) = \sin x \quad f^{(4)}(x) = \cos x \quad f^{(5)}(x) = -sin(x) \quad f^{(6)}(x) = -\cos x \quad f^{(7)}(x) = \sin x \quad\cdots 通样4个一个循环 \\[2ex] f(0) = 1 \qquad\ f'(0) = 0 \qquad\qquad f''(0) = -1 \qquad\quad f'''(0) = 0 \qquad\quad f^{(4)}(0) = 1 \qquad\ f^{(5)}(0) = 0 \qquad\qquad f^{(6)}(0) = -1 \qquad\quad f^{(7)}(0) = 0 \qquad\cdots \\[2ex] f(x) = \cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 -\frac{1}{6!}x^6\cdots \\[2ex] f(x)=cosxf(x)=sin(x)f(x)=cosxf(x)=sinxf(4)(x)=cosxf(5)(x)=sin(x)f(6)(x)=cosxf(7)(x)=sinx4f(0)=1 f(0)=0f(0)=1f(0)=0f(4)(0)=1 f(5)(0)=0f(6)(0)=1f(7)(0)=0f(x)=cosx=12!1x2+4!1x46!1x6
在这里插入图片描述

观察 sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 的泰勒级数展开可以发现, sin ⁡ x \sin x sinx 的泰勒级数展开中幂函数的指数都为奇数,所以为奇函数; cos ⁡ x \cos x cosx 的泰勒级数展开中幂函数的指数都为偶数,所以为偶函数。这里为函数的奇偶性提供了另一种见解。
再将 sin ⁡ x \sin x sinx 的泰勒级数展开中 x x x 后的部分截断,得到: sin ⁡ x = x \sin x = x sinx=x ,这就是 sin ⁡ x \sin x sinx x = 0 x=0 x=0 处的线性近似。(这里可以再查看下上一节课 e 0.01 {\rm e}^{0.01} e0.01 的例子,比 sin ⁡ x \sin x sinx 的例子更清楚。)
观察泰勒级数,每一项的分子是幂函数,分母是阶乘,在第十二课中学习到,阶乘增长是大于幂函数的多项式增长的,所以其高阶项的贡献比较小。在余弦级数中代入 x = π x=\pi x=π ,它们会相互抵消,变得很小,最终得到答案 − 1 -1 1

2.欧拉公式

这里需要使用虚数 i i i i 2 = − 1 i^2=-1 i2=1 。下面推导一下:
e i x = 1 + i x − 1 2 ! x 2 − 1 3 ! i x 3 + ⋯ = ( 1 − 1 2 ! x 2 + ⋯   ) + i ( x − 1 3 ! x 3 + ⋯   ) = cos ⁡ x + i sin ⁡ x \begin{aligned} e^{ix} &= 1 + ix - \frac{1}{2!}x^2 - \frac{1}{3!}ix^3 + \cdots \\[2ex] &= (1 - \frac{1}{2!}x^2 + \cdots) +i(x - \frac{1}{3!}x^3 + \cdots) \\[2ex] &=\cos x + i\sin x \\[2ex] \end{aligned} eix=1+ix2!1x23!1ix3+=(12!1x2+)+i(x3!1x3+)=cosx+isinx
在这里插入图片描述

x x x 替换为 θ \theta θ 得到:
e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} = \cos\theta + i\sin\theta \\[2ex] eiθ=cosθ+isinθ
接着可以画出复平面:
在这里插入图片描述

3.几何级数及其积分

几何级数:
1 1 − x = 1 + x + x 2 + x 3 + ⋯ \frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots 1x1=1+x+x2+x3+
可以通过两边都乘以 1 − x 1-x 1x 证明。 ∣ x ∣ < 1 |x| < 1 x<1 时成立。
将上述级数进行积分:
− ln ⁡ ( 1 − x ) = x + x 2 2 + x 3 3 + x 4 4 + ⋯ -\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots ln(1x)=x+2x2+3x3+4x4+
也是在 ∣ x ∣ < 1 |x| < 1 x<1 时成立。
在这里插入图片描述

PS:这里感觉学得不是很透彻,后续再看书。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值