[MIT]微积分重点 第九课 极限和连续 学习笔记

1.极限

ϵ \epsilon ϵ 在数学上往往用来表示极小的数,不管数列 a n a_n an 前面的数怎么变化,数列中足够靠后的数字无一例外的都会落在 A − ϵ A-\epsilon Aϵ A + ϵ A+\epsilon A+ϵ 之间,这就意味着当 n n n 接近于 ∞ \infty 时, a n a_n an 的值接近于 A A A (用符号表示为:当 n → ∞ n \rightarrow \infty n 时, a n → A a_n \rightarrow A anA )。同样,落在 0 0 0 ϵ \epsilon ϵ 之间为趋向于 0 0 0 ;落在 1 / ϵ 1/\epsilon 1/ϵ 之上为无穷大极限。这里我们学习了三种极限,分别为零极限、正数极限和无穷大极限。当然也有一些是没有极限的,比如 sin ⁡ x \sin x sinx ,当 x x x 趋于无穷大时是没有极限的。
在这里插入图片描述

2.极限的特殊情况

2.1 a n − b n → A − B a_n-b_n \rightarrow A-B anbnAB

∞ − ∞ \infty - \infty
例:当 a n = n 2 a_n=n^2 an=n2 b n = n b_n=n bn=n 时, a n − b n → ∞ a_n-b_n \rightarrow \infty anbn
例:当 a n = n a_n=n an=n b n = n b_n=n bn=n 时, a n − b n → 0 a_n-b_n \rightarrow 0 anbn0
从上述例子可以看出,当 a n → ∞ a_n \rightarrow \infty an b n → ∞ b_n \rightarrow \infty bn 时, a n − b n a_n-b_n anbn 的结果可以是 ∞ \infty ,也可以是 − ∞ -\infty ,还可以是任意数。

2.2 a n b n → A B a_nb_n \rightarrow AB anbnAB

( 0 ) ( ∞ ) (0)(\infty) (0)()
例:当 a n = 1 / n 2 a_n=1/n^2 an=1/n2 b n = n b_n=n bn=n 时, a n b n = 1 / n → 0 a_nb_n = 1/n\rightarrow 0 anbn=1/n0
例:当 a n = 1 / n a_n=1/n an=1/n b n = n 2 b_n=n^2 bn=n2 时, a n b n = n → ∞ a_nb_n = n\rightarrow \infty anbn=n
从上述例子可以看出,当 a n → 0 a_n \rightarrow 0 an0 b n → ∞ b_n \rightarrow \infty bn 时, a n b n a_nb_n anbn 的结果也可以是任意数。

2.3 ( a n ) b n → A B (a_n)^{b_n} \rightarrow A^B (an)bnAB

0 0 0^0 00 1 ∞ 1^\infty 1
例:当 a n = 1 + 1 / n a_n=1+1/n an=1+1/n b n = n b_n = n bn=n 时, ( a n ) b n = ( 1 + 1 / n ) n → e (a_n)^{b_n} = (1+1/n)^n \rightarrow \rm e (an)bn=(1+1/n)ne
例:当 a n = 1 + 1 / n 2 a_n=1+1/n^2 an=1+1/n2 b n = n b_n = n bn=n 时, ( a n ) b n = ( 1 + 1 / n 2 ) n → 1 (a_n)^{b_n} = (1+1/n^2)^n \rightarrow 1 (an)bn=(1+1/n2)n1
例:当 a n = 1 + 1 / n a_n=1+1/n an=1+1/n b n = n 2 b_n = n^2 bn=n2 时, ( a n ) b n = ( 1 + 1 / n ) n 2 → ∞ (a_n)^{b_n} = (1+1/n)^{n^2} \rightarrow \infty (an)bn=(1+1/n)n2
在这里插入图片描述

2.4 a n / b n → A / B a_n/b_n \rightarrow A/B an/bnA/B

0 / 0 0/0 0/0 (被教授称为微积分中最重要的问题之一)或 ∞ / ∞ \infty / \infty /
洛必达法则
f ( x ) g ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) = 当x=0时 lim ⁡ Δ x → 0 f ( Δ x ) g ( Δ x ) = lim ⁡ Δ x → 0 f ( Δ x ) / Δ x g ( Δ x ) / Δ x = f ′ ( x ) g ′ ( x ) \frac{f(x)}{g(x)}=\lim_{\Delta x \to 0}\frac{f(x + \Delta x)}{g(x + \Delta x)}\overset{\text{当x=0时}}{=}\lim_{\Delta x \to 0}\frac{f(\Delta x)}{g(\Delta x)}=\lim_{\Delta x \to 0}\frac{f(\Delta x)/\Delta x}{g(\Delta x)/\Delta x}=\frac{f'(x)}{g'(x)} g(x)f(x)=Δx0limg(x+Δx)f(x+Δx)=x=0Δx0limg(Δx)f(Δx)=Δx0limg(Δx)/Δxf(Δx)/Δx=g(x)f(x)
在这里插入图片描述

教授应该是上式这个意思,但是这个证明的例子比较特殊,刚好是 x → 0 时 , f ( x ) → 0 , g ( x ) → 0 x\rightarrow 0时,f(x)\rightarrow 0,g(x)\rightarrow 0 x0f(x)0g(x)0 ;其实不管 x x x 趋向于多少,只要 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的极限等于0,上式也是成立的。
先列出导数的表达式:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x)=\lim_{\Delta x \to 0}\frac{f(x + \Delta x) - f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)
f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的极限等于0时:
f ( x ) g ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) / Δ x g ( x + Δ x ) / Δ x = f ′ ( x ) g ′ ( x ) \frac{f(x)}{g(x)}=\lim_{\Delta x \to 0}\frac{f(x + \Delta x)}{g(x + \Delta x)}=\lim_{\Delta x \to 0}\frac{f(x + \Delta x)/\Delta x}{g(x + \Delta x)/\Delta x}=\frac{f'(x)}{g'(x)} g(x)f(x)=Δx0limg(x+Δx)f(x+Δx)=Δx0limg(x+Δx)/Δxf(x+Δx)/Δx=g(x)f(x)
上面只证明了 0 / 0 0/0 0/0 ,并没有证明 ∞ / ∞ \infty / \infty / ,其实两者都可以用洛必达法则。

3.函数的连续性

接着提出了如果函数 f ( x ) = x f(x)=\sqrt{x} f(x)=x 在0处无法使用洛必达法则,虽然其在0处是连续的,但是并不可导。
在这里插入图片描述

然后给出了结论:可导必定连续,连续不一定可导。
最后给出了函数连续性的定义:
对于任意的 ϵ > 0 \epsilon > 0 ϵ>0 ,存在 δ > 0 \delta > 0 δ>0 ,如果 ∣ x − a ∣ < δ |x-a| < \delta xa<δ ,那么 ∣ f ( x ) − f ( a ) ∣ < ϵ |f(x)-f(a)| < \epsilon f(x)f(a)<ϵ
在这里插入图片描述

例: f ( x ) = sin ⁡ ( 1 x ) f(x)=\sin(\frac{1}{x}) f(x)=sin(x1) 就是一个不连续的例子,当 x → 0 x\rightarrow 0 x0 时,函数值在-1与+1之间变动无限多次,所以点 x = 0 x=0 x=0 称为函数 sin ⁡ ( 1 x ) \sin(\frac{1}{x}) sin(x1) 的振荡间断点。
在这里插入图片描述

例:将上面的函数乘以 x x x f ( x ) = x sin ⁡ ( 1 x ) f(x)=x\sin(\frac{1}{x}) f(x)=xsin(x1) x = 0 x = 0 x=0 时是连续的。
在这里插入图片描述

4.洛必达法则

感觉这节课讲的比较浅,我又看了《普林斯顿微积分读本》中的洛必达部分下面大概讲下思路。(这里有些是后面的内容)
我们学过的大部分极限都是以下情况之一:
lim ⁡ x → a f ( x ) g ( x ) , lim ⁡ x → a ( f ( x ) − g ( x ) ) , lim ⁡ x → a f ( x ) g ( x ) , lim ⁡ x → a f ( x ) g ( x ) \lim_{x \to a}\frac{f(x)}{g(x)},\lim_{x \to a}(f(x)-g(x)),\lim_{x \to a}f(x)g(x),\lim_{x \to a}{f(x)}^{g(x)} xalimg(x)f(x)xalim(f(x)g(x))xalimf(x)g(x)xalimf(x)g(x)
有时你可以利用函数的连续性直接用 a a a 来替代 x x x 进行计算,但这种方法可能解决不了问题。例如,下面的特殊情况。
第一种类型是两个函数的比 f ( x ) / g ( x ) f(x)/g(x) f(x)/g(x) ,最适合用洛必达法则,我们称它为“类型A”。接下来两种类型为 f ( x ) − g ( x ) f(x)-g(x) f(x)g(x) f ( x ) g ( x ) f(x)g(x) f(x)g(x) ,都可以转化为“类型A”,所以我们管他们叫“类型B1”和“类型B2”。最后我们把关于指数型函数 f ( x ) g ( x ) {f(x)}^{g(x)} f(x)g(x) 的类型叫做“类型C”,该类型可以转化为“类型B2”,从而再转化为“类型A”。

4.1 类型A: 0 / 0 0/0 0/0 ± ∞ / ± ∞ \pm\infty / \pm\infty ±/±

例:
lim ⁡ x → 3 x 2 − 9 x − 3 = l’H 2 x 1 = 6 \lim_{x \to 3}\frac{x^2-9}{x-3}\overset{\text{l'H}}{=}\frac{2x}{1}=6 x3limx3x29=l’H12x=6
这道题也可以用因式分解解决:
lim ⁡ x → 3 x 2 − 9 x − 3 = lim ⁡ x → 3 ( x + 3 ) ( x − 3 ) x − 3 = lim ⁡ x → 3 ( x + 3 ) = 3 + 3 = 6 \lim_{x \to 3}\frac{x^2-9}{x-3}=\lim_{x \to 3}\frac{(x+3)(x-3)}{x-3}=\lim_{x \to 3}(x+3)=3+3=6 x3limx3x29=x3limx3(x+3)(x3)=x3lim(x+3)=3+3=6
两个方法得到的答案相同。

4.2 类型B1:( ∞ − ∞ \infty - \infty )

例:
lim ⁡ x → 0 ( 1 sin ⁡ x − 1 x ) = lim ⁡ x → 0 x − sin ⁡ x x sin ⁡ x = l’H lim ⁡ x → 0 1 − cos ⁡ x sin ⁡ x + x cos ⁡ x = l’H lim ⁡ x → 0 sin ⁡ x 2 cos ⁡ x − x sin ⁡ x = 0 2 + 0 = 0 \lim_{x \to 0}(\frac{1}{\sin x} - \frac{1}{x})=\lim_{x \to 0}\frac{x-\sin x}{x\sin x}\overset{\text{l'H}}{=}\lim_{x \to 0}\frac{1-\cos x}{\sin x+x\cos x}\overset{\text{l'H}}{=}\lim_{x \to 0}\frac{\sin x}{2\cos x-x\sin x}=\frac{0}{2+0}=0 x0lim(sinx1x1)=x0limxsinxxsinx=l’Hx0limsinx+xcosx1cosx=l’Hx0lim2cosxxsinxsinx=2+00=0

4.3 类型B2:( 0 × ± ∞ 0\times\pm\infty 0×± )

lim ⁡ x → 0 + x ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x 1 / x = l’H lim ⁡ x → 0 + 1 / x − x − 2 = lim ⁡ x → 0 + ( − x ) = 0 \lim_{x \to 0^+}x\ln x=\lim_{x \to 0^+}\frac{\ln x}{1/x}\overset{\text{l'H}}{=}\lim_{x \to 0^+}\frac{1/x}{-x^{-2}}=\lim_{x \to 0^+}(-x)=0 x0+limxlnx=x0+lim1/xlnx=l’Hx0+limx21/x=x0+lim(x)=0

4.4 类型C: 1 ± ∞ 1^{\pm \infty} 1± 0 0 0^0 00 ∞ 0 \infty ^ 0 0

例:
lim ⁡ x → 0 + x sin ⁡ x \lim_{x \to 0^+}x^{\sin x} x0+limxsinx
取对数:
lim ⁡ x → 0 + sin ⁡ x ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x 1 / sin ⁡ x = l’H lim ⁡ x → 0 + 1 / x − 1 / ( sin ⁡ x ) − 2 cos ⁡ x = lim ⁡ x → 0 + − ( sin ⁡ x ) 2 x cos ⁡ x = lim ⁡ x → 0 + − sin ⁡ x x sin ⁡ x cos ⁡ x = − 1 × 0 = 0 \lim_{x \to 0^+}\sin x\ln x=\lim_{x \to 0^+}\frac{\ln x}{1/\sin x}\overset{\text{l'H}}{=}\lim_{x \to 0^+}\frac{1/x}{-1/(\sin x)^{-2}\cos x}=\lim_{x \to 0^+}\frac{-(\sin x)^{2}}{x\cos x}=\lim_{x \to 0^+}-\frac{\sin x}{x}\frac{\sin x}{\cos x}=-1\times 0=0 x0+limsinxlnx=x0+lim1/sinxlnx=l’Hx0+lim1/(sinx)2cosx1/x=x0+limxcosx(sinx)2=x0+limxsinxcosxsinx=1×0=0
再求指数:
lim ⁡ x → 0 + x sin ⁡ x = e 0 = 1 \lim_{x \to 0^+}x^{\sin x}=\rm e^0=1 x0+limxsinx=e0=1
这里是先求该函数的对数,再用处理“类型B2”的方法计算极限。最后,再对刚才的计算结果求指数。

指数:
lim ⁡ x → 0 + x sin ⁡ x = e 0 = 1 \lim_{x \to 0^+}x^{\sin x}=\rm e^0=1 x0+limxsinx=e0=1
这里是先求该函数的对数,再用处理“类型B2”的方法计算极限。最后,再对刚才的计算结果求指数。

PS:学完这课明显感觉自己的基础比较差,后面有空可以把书从头看一遍再找找有没有合适的练习,这里立个flag。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值