贝叶斯方法(实例1)——概率分布

本文通过一个实例介绍了贝叶斯方法在概率分析中的应用,探讨了图书管理员与农民概率的问题。利用贝叶斯定理,根据描述更新先验概率,得出在给定信息下史蒂文是图书管理员的概率。接着,文章概述了概率分布的离散和连续情况,以Poisson和指数分布为例,展示了如何计算和理解这些分布函数。
摘要由CSDN通过智能技术生成

频率派认为概率是事件在长时间内发生的频率;贝叶斯派把概率解释成是对事件发生的信心。

如果频率推断和贝叶斯推断是一种编程函数,输入是各种统计问题,那么这两个函数返回的结果可能是不同的。频率推断返回一个估计值(通常是统计量),而贝叶斯推断则会返回概率值。

实例:图书管理员还是农民


故事的灵感来自于Daniel Kahneman的《思考,快与慢》一书,史蒂文被描述为一个害羞的人,他乐于助人,但是他对其他人不太关注。他非常乐见事情处于合理的顺序,并对他的工作非常细心。你会认为史蒂文是一个图书管理员还是一个农民?

从上面的描述来看,大多数人会认为史蒂文更像是图书管理员,但是却忽略了一个关于图书管理员和农民的事实:男性图书管理员的人数只有男性农民的1/20。所以,从统计学来看史蒂文更有可能是一个农民。

把问题简化,假设世上只有两种职业——图书管理员和农民,并且农民的数量确实是图书管理员的20倍。

设事件A为史蒂文是一个图书管理员。如果我们没有史蒂文的任何信息,那么P(A) = 1/21 = 0.047,这是我们的先验。

现在假设从史蒂文的邻居们那里得到了关于他的一些消息,我们称它为X。我们想知道的就是P(A|X),由贝叶斯定理得:




P(X|A)可以被定义为在史蒂文真的是一个图书管理员的情况下,邻居们给出的某种描述的概率。即如果史蒂文真的是一个图书管理员,他的邻居们将他描述为一个图书管理员的概率,这个值可能接近于1,假设它为0.95。

P(X)可以解释为:任何人对史蒂文的描述和史蒂文邻居的描述一致的概率。我们将其改造为: P(X)=P(X and A) + P(X and ~A)=P(X|A)P(A) + P(X|~A)P(~A) 其中~A表示史蒂文不是一个图书管理员的事件,那么他一定是一个农民。

现在我们知道P(X|A)和P(A),另外也可知P(~A)=1-P(A)=20/21。现在我们只需知道P(X|~A),即在史蒂文为一个农民的情况下,史蒂文的邻居们给出的某种描述的概率即可,假设它为0.5,这样 P(X)=0.95*1/21 + 0.5*20/21=0.52

结合以上,P(A|X)=(0.95*1/21)/0.52=0.087

这个值并不算高,但考虑到农民的数量比图书管理员的数量多那么多,这个结果也非常合理了。

具体实现代码如下:

# -*- coding: utf-8 -*-
from IPython.core.pylabtools import figsize
import numpy as np
from matplotlib import pyplot as plt

figsize(12.5, 4)
plt.rcParams['savefig.dpi'] = 100
plt.rcParams['figure.dpi'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值