蒸馏 DeepSeek - R1 的详细步骤与优化策略

模型蒸馏概述

模型蒸馏是一种机器学习技术,通过将知识从大型复杂模型(教师模型)转移到较小、更高效的模型(学生模型),在显著降低计算成本和内存占用的同时,保留教师模型的大部分性能。蒸馏的方法主要有以下几种:

  • 数据蒸馏:教师模型生成合成数据或伪标签,用于训练学生模型,可应用于多种任务,包括开放式推理任务。
  • Logits 蒸馏:学生模型训练匹配教师模型的 Logits,即应用 softmax 函数前的原始输出分数,能保留更多教师模型的置信水平和决策过程信息。
  • 特征蒸馏:将教师模型中间层的知识传递给学生模型,通过对齐隐表征,让学生学习更丰富、抽象的特征。

蒸馏 DeepSeek - R1 的准备工作

  • 安装库
    • 首先需要安装相关的 Python 库,包括torch、transformers、datasets、accelerate、bitsandbytes、flash - attn等。可以使用以下命令安装:pip install -q torch transformers datasets accelerate bitsandbytes flash - attn -- no - build - isolation。
  • 生成和格式化数据集
    • 可以通过在环境中使用ollama或其他部署框架部署DeepSeek - R1来生成自定义的领域相关数据集。若使用Magpie - Reasoning - V2数据集,它包含由DeepSeek - R1生成的 25 万条链式思考(CoT)推理样本,涵盖数学推理、编码和一般问题解决等任务。加载数据集后进行格式化,并将其构建为目标模型(如 Phi - 3)的聊天模板格式,以确保模型学习到正确的会话模式。同时进行训练 - 测试集划分,例如按 90% - 10% 的比例划分。
  • 加载模型和 Tokenizer
    • 加载预训练的学生模型和对应的分词器。例如,如果要蒸馏到微软的 Phi - 3 - Mini 模型,可以使用AutoTokenizer和AutoModelForCausalLM从transformers库中加载模型和分词器。添加自定义标记以适应模型的特定需求,并将填充标记设置为结束标记。使用flash attention加载模型以提高效率,并根据需要调整模型的词向量维度以适应自定义标记。

配置 LoRA 进行高效微调

LoRA 通过冻结基本模型和只训练小的适配器层来减少内存使用。在配置 LoRA 时,需要定义一些参数,如per_device_train_batch_size(每个设备的训练批次大小)、per_device_eval_batch_size(每个设备的评估批次大小)、gradient_accumulation_steps(梯度累积步数)、eval_strategy(评估策略)、save_strategy(保存策略)、logging_strategy(日志记录策略)、logging_steps(日志记录步数)、learning_rate(学习率)、fp16(是否使用半精度浮点数)、optim(优化器)、max_grad_norm(最大梯度范数)、warmup_ratio(热身比例)、lr_scheduler_type(学习率调度器类型)等。

训练模型

使用SFTTrainer来简化指令遵循模型的监督微调过程。定义一个DataCollatorForLanguageModeling作为数据整理器,用于对示例进行批处理。将配置好的模型、训练参数、训练数据集、评估数据集、数据整理器和peft_config(用于支持基于 LoRA 的训练)传递给SFTTrainer,然后调用train方法开始训练模型。训练完成后,保存模型和分词器。

合并并保存最终模型

训练后,将 LoRA 适配器与基础模型合并进行推理。这一步确保模型可以在没有PEFT(Parameter - Efficient Fine - Tuning)的情况下独立使用。将合并后的模型保存到指定的路径,同时也保存分词器。

推理

使用pipeline或直接加载微调后的模型进行推理。将模型加载到指定的设备上,并设置数据类型为torch.float16以提高推理速度。可以输入相应的文本进行推理,得到模型的输出。

蒸馏策略与优化

  • 损失函数设计:采用高温参数(Temperature Scaling),在教师模型推理时使用高温T(如T = 5),软化输出分布,使学生模型更容易学习。也可以考虑渐进式蒸馏,分阶段蒸馏,例如先蒸馏底层,再逐步加入高层。
  • 学习率与优化器:使用较低的学习率(如1e - 5到1e - 4)和AdamW优化器,配合warmup和线性衰减,有助于模型的稳定训练和收敛。
  • 计算指标与加速:关注模型大小、FLOPs、推理速度(如tokens/sec)等计算指标。使用ONNX、TensorRT或专用推理框架(如FasterTransformer)来加速模型推理。还可以进行量化压缩,如采用FP16或INT8量化进一步减小模型体积。

模型选择与架构压缩

  • 模型选择:确认使用完整版DeepSeek - R1作为教师模型,确保其在下游任务上表现优秀。对于学生模型,可以选择经过验证的轻量架构,如TinyBERT、DistilBERT等。
  • 架构压缩:可以通过减少层数(如从 24 层减至 6 层)、隐藏层维度(如从 768 到 256)或注意力头数等方式对学生模型架构进行压缩。同时,可以从教师模型的部分层进行参数初始化(如前三层),以加速学生模型的收敛。

以上是蒸馏DeepSeek - R1的一般步骤和方法,在实际操作中,可能需要根据具体的任务、数据集和硬件资源等情况进行调整和优化。

### DeepSeek R1 蒸馏 Qwen 32B 模型介绍 DeepSeek R1 蒸馏 Qwen 32B 是一款基于蒸馏技术优化的大规模预训练语言模型。该模型通过知识蒸馏方法从小于原始大型模型(如Qwen-70B)中提取关键特征并应用于较小的架构,从而实现性能提升的同时显著减少计算资源消耗[^2]。 #### 主要特点: - **高效推理**:相比未经过蒸馏处理的标准版本,此款32B参数量级的小型化变体能够在保持较高精度的前提下提供更快捷稳定的推断服务,具体表现为在多个评测标准上的表现优异,例如GSM8K、HumanEval等基准测试中的成绩接近顶尖封闭源码解决方案。 - **开放许可协议支持下的广泛应用场景**:依据MIT许可证条款发布,允许开发者自由获取代码库以及相关文档资料用于研究学习或商业用途开发工作之中[^1]。 #### 部署指南概览 为了便于用户快速上手操作,官方提供了详细的安装指导手册。以下是简化后的步骤概述: 进入目标文件夹位置后执行如下指令完成环境搭建依赖项配置过程: ```bash cd /home/models git lfs install git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.git ``` 上述命令序列首先初始化Git LFS以管理大尺寸二进制对象存储需求;接着克隆远程仓库至本地机器以便后续调用API接口等功能模块[^3]。 #### 参数详情 关于具体的内部结构设计细节及超参设定情况,虽然当前信息有限未能给出详尽描述,但从名称推测可知其基础框架应建立在Transformer之上,并且拥有约三十亿个可训练权重节点参前向传播运算流程当中。对于更加深入的技术规格解读,则建议查阅项目主页发布的最新版README.md文件获得最权威解释说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王国平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值