PyTorch深度学习实战(11)—— 常用神经网络层

本节对常用的神经网络层进行介绍,这部分内容在神经网络的构建中将发挥重要作用。

1.图像相关层

图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中可以分为一维(1D)、二维(2D)和三维(3D)几种情况。池化方式包括平均池化(AvgPool)、最大值池化(MaxPool)、自适应平均池化(AdaptiveAvgPool)等。卷积层除了常用的前向卷积,还有逆卷积或转置卷积(TransposeConv)。

1.1 卷积层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shangjg3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值