本节对常用的神经网络层进行介绍,这部分内容在神经网络的构建中将发挥重要作用。
1.图像相关层
图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中可以分为一维(1D)、二维(2D)和三维(3D)几种情况。池化方式包括平均池化(AvgPool)、最大值池化(MaxPool)、自适应平均池化(AdaptiveAvgPool)等。卷积层除了常用的前向卷积,还有逆卷积或转置卷积(TransposeConv)。
本节对常用的神经网络层进行介绍,这部分内容在神经网络的构建中将发挥重要作用。
图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中可以分为一维(1D)、二维(2D)和三维(3D)几种情况。池化方式包括平均池化(AvgPool)、最大值池化(MaxPool)、自适应平均池化(AdaptiveAvgPool)等。卷积层除了常用的前向卷积,还有逆卷积或转置卷积(TransposeConv)。
285

被折叠的 条评论
为什么被折叠?