深度学习论文: Student-Teacher Feature Pyramid Matching for Anomaly Detection及其PyTorch实现
Student-Teacher Feature Pyramid Matching for Anomaly Detection
PDF: https://arxiv.org/pdf/2103.04257v2.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
STFPM遵循学生-教师框架的优点,但在准确性和效率方面进行了大幅扩展。具体而言,STFPM使用在图像分类上经过预训练的强大网络作为教师,将其知识融入到具有相同架构的单个学生网络中。在这种情况下,学生网络通过将无异常图像的特征与预训练网络的对应特征进行匹配来学习无异常图像的分布,这一步骤的转移尽可能地保留了关键信息。此外,为了增强尺度鲁棒性,STFPM将多尺度特征