【ThunderNet】《ThunderNet: Towards Real-time Generic Object Detection on Mobile Devices》

在这里插入图片描述

ICCV-2019


1 Background and Motivation

CNN-based detectors 一般构成如下,

  • backbone part
  • detection part
    • one stage(directly predict bounding boxes and class probabilities.)
    • or two stage(RPN+head)

现在的 CNN-based detectors 都是 resource-hungry 的,需要大量的 computation 才能达到 ideal detection accuracy,显然难以落地到移动端上


更细致的分析:

1)backbone part

backbone part 主要是根据 classification 任务来设计的, classification 任务不需要定位,object detection 任务需要定位(精确的定位需要 large receptive field 和 low-level feature) ,作者说 object detection 和 classification 的这种 gaps obstructs further compression without harming detection accuracy.

2)detection part

two stage detectors 中,头部计算量虽然经过几次精简(eg:R-FCN,light head RCNN),但把 backbone 压缩下来以后还是显得头重脚轻,This imbalance not only induces great redundancy but makes the network prone to overfitting

one stage detectors 只在 backbone 后面接几个卷积层,计算量比 two stage 小,所以被广泛的用于 real-time detection 中。However,one stage 没有 RoI-wise feature extraction and recognition,结果会比 two stage coarser 一些,压缩以后,效果会进一步 aggravated!


one stage 快,two stage 好,能否中西结合? Can two-stage detectors surpass one-stage detectors in real-time detection?

作者提出了在移动设备上 generic 的 object detection 模型,区别于以往的 one-stage 的 lightweight 模型,作者在 two-stage 上开始了他的精雕细琢!

2 Advantages / Contributions

提出 ThunderNet,first real-time detector reported on ARM platforms(24.1 fps on an ARM-based device with 19.2 AP on COCO)

这个频率好像刚刚能摆脱幻灯片,开始看动画片了

3 Method

  • 设计 SNet backbone

  • 压缩 Light Head R-CNN 的头

  • 设计 Context Enhancement Module (CEM) and Spatial Attention Module (SAM) 来 eliminate 压缩后的影响

3.1 Backbone part

1)Input Resolution

input resolution should match the capability of the backbone

2)Backbone Networks

simply transferring classification networks to object detection is not optimal

大感受野的好处,有 more context information,能编码 long range relationship between pixels more effectively,定位大的物体需要大的感受野

backbone 中 early stage features 是 describe spatial details,有利于定位,late-stage features 更具有 discriminative 有利于分类,两者都很重要!


总结,好的 backbone 需要大感受野,强的 early stage features 和 late-stage features

作者在 ShuffleNet 的基础上设计了 SNet,

在这里插入图片描述
3 ∗ 3 3*3 33 depth-wise conv to 5 ∗ 5 5*5 55 来增加感受野,

SNet146 SNet535 中 remove 了 conv5,增加前面 features 的 channels,来增强 early stage features,

SNet 49 中移除 conv5,编码信息不够,保留,early stage feature 相对弱,作者把 conv5 channel 砍半了,1024 to 512,让 early stage 和 late stage 的 feature 取得较好的平衡

3.2. Detection Part

backbone 和 detection part 计算量不平衡,not only leads to redundant computation but increases the risk of over-fitting

在这里插入图片描述

1)RPN

作者对 RPN 的改进:256 channels 的 3 ∗ 3 3*3 33,变成 256 channels 的 5 ∗ 5 5*5 55 depth-wise 和 1 ∗ 1 1*1 11,5 scales 和 5 ratio,来增大感受野

2)Context Enhancement Module

对 FPN 的改进,来 aggregate multi-scale local context information and global context information to generate more discriminative features.

在这里插入图片描述
1 ∗ 1 1*1 11 conv to 245, 245 = α ∗ p ∗ p = 5 ∗ 7 ∗ 7 245 = \alpha * p *p = 5*7*7 245=αpp=577,最后合成一个

3)Spatial Attention Module
在这里插入图片描述
SAM 的输入 是 F C E M F^{CEM} FCEM F R P N F^{RPN} FRPN,输出是 F S A M F^{SAM} FSAM用 RPN 来作注意力的激活权重,666

对应图1中
在这里插入图片描述
在这里插入图片描述

SAM 有两个作用,

  • refine the feature distribution by strengthening foreground features and suppressing background features(这就是为什么用 rpn 特征图来算激活权重的原因了)
  • 从上图看出,多了 SAM,RPN 的梯度反向传播多了一条路径(RPN receives additional supervision from RCNN subnet),文中说,这有利于 RPN 的训练!

在这里插入图片描述
在这里插入图片描述
也就是多了后面一项,从 R-CNN subnet 模块过来的经过 SAM 流回 RPN

4 Experiments

detail

  • Multi-scale training
  • OHEM
  • soft-NMS
  • Cross-GPU Batch Normalization

4.1 Datasets

  • PASCAL VOC
  • COCO

4.2. Results on PASCAL VOC

07+12 trainval 来 train 07 test 来 test,
在这里插入图片描述
又快又好

4.3 Results on MS COCO

trainval35k for training
minival for validation
single-model results on test-dev

在这里插入图片描述

A P 75 AP_{75} AP75 的强势,可以看出有更好的定位能力,感受一下

在这里插入图片描述

4.4. Ablation Experiments

1)Input Resolution
在这里插入图片描述
什么样的脚穿什么样的鞋,小脚大鞋,大脚小鞋都不合脚

2)Backbone Networks
在这里插入图片描述
3)Comparison with Lightweight Backbones
在这里插入图片描述
4)Detection Part
在这里插入图片描述
5)Balance between Backbone and Detection Head

在这里插入图片描述
the capability of the backbone and the detection head should match

4.5 Inference Speed

在这里插入图片描述

5 Conclusion(own)

  • 用 RPN 来做空间注意力的激活权重,脑洞大,达到增强前景,抑制背景的作用
  • 提高目标检测的性能,需要大感受野, early stage features 和 last stage features 并重
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值