最近发现由于做的东西太多太杂,总是会出现某些细节怎么计算给忘记的情况,因此整理一下关于机器学习中,一些常见的单元细节问题,留存记录。
机器学习中,关于使用kernel进行卷积运算,共三种形式:SAME,VALID,FULL,这三种形式中,较常见的是前两种,其中,关于使用这三种形式计算新SHAPE公式分别为:
原Shape(w,h,chanel) , 新Shape(new_w,new_h,chanel)
SAME: new_w = w / stride, new_h = h / stride, 结果向上取整(如:54.1or54.9,全部取55)
VALID: new_w = ( w - kernel_size + 1) / stride , new_h = (h - kernel_size + 1) / stride , 结果向上取整
FULL : new_w = ( w + kernel_size - 1) /stride , new_h = (h + kernel_size -1) /stride,结果向上取整
计算参数:
kernel_w * kernel_h * input_channel * output_channel
计算复杂度:
kernel_w * kernel_h * input_chanel * output_chanel * next_shape(w , h)