在YOLO目标检测中,“精度提升”往往卡在两个关键点:数据特征挖掘不足(导致模型泛化差)和目标匹配低效(导致定位不准)。本文通过控制变量法对比实验,量化验证“数据增强”与“锚框调整”对精度的提升效果——在自定义数据集上,单独增强可提升8.3% mAP,单独锚框调整提升5.7%,两者结合直接突破15%,小目标AP甚至提升22%。
全程包含可复现的实验设计、增强策略配置、锚框聚类工具及结果可视化,帮你快速复制“立竿见影”的精度提升效果。
一、实验设计:公平对比的基准设置
为确保实验结论可靠,需严格控制变量(仅改变增强策略或锚框参数),其他条件保持一致。
1. 数据集与目标
采用VOC格式的“工业零件缺陷检测”数据集(自定义,更贴近实际业务场景):
- 总样本:3000张训练集,500张验证集;
- 目标类别:4类缺陷(划痕、变形、污渍、裂缝);
- 目标尺寸分布:
- 小目标(<32×32像素):35%(如细微划痕);
- 中目标(32×32-96×96):45%(如中等变形);
- 大目标(>96×96):20%(如大面积污渍)。
痛点:小目标漏检率高(基线模型小目标AP仅52%),边界框定位偏
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



