YOLO精度提升:数据增强与锚框调整的协同优化(附对比实验与代码)

在YOLO目标检测中,“精度提升”往往卡在两个关键点:数据特征挖掘不足(导致模型泛化差)和目标匹配低效(导致定位不准)。本文通过控制变量法对比实验,量化验证“数据增强”与“锚框调整”对精度的提升效果——在自定义数据集上,单独增强可提升8.3% mAP,单独锚框调整提升5.7%,两者结合直接突破15%,小目标AP甚至提升22%。

全程包含可复现的实验设计增强策略配置锚框聚类工具结果可视化,帮你快速复制“立竿见影”的精度提升效果。

一、实验设计:公平对比的基准设置

为确保实验结论可靠,需严格控制变量(仅改变增强策略或锚框参数),其他条件保持一致。

1. 数据集与目标

采用VOC格式的“工业零件缺陷检测”数据集(自定义,更贴近实际业务场景):

  • 总样本:3000张训练集,500张验证集;
  • 目标类别:4类缺陷(划痕、变形、污渍、裂缝);
  • 目标尺寸分布:
    • 小目标(<32×32像素):35%(如细微划痕);
    • 中目标(32×32-96×96):45%(如中等变形);
    • 大目标(>96×96):20%(如大面积污渍)。

痛点:小目标漏检率高(基线模型小目标AP仅52%),边界框定位偏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员威哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值