描述在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。输入输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。样例输入
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
样例输出
2
1
经典的八皇后问题,但是自己忘记了,看了就跳过了,经老王提醒才回头来做,惭愧
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int a,b;
char matrix[10][10];
int row[10];
int cnt=0;
void dfs(int tempx,int flag)
{
for(int i=tempx; i<a; i++)
{
for(int j=0; j<a; j++)
{
if(row[j]==1)
continue;
if(matrix[i][j]=='#')
{
row[j]=1;
if(flag+1==b)
{
row[j]=0;
cnt++;
continue;
}
dfs(i+1,flag+1);
row[j]=0;
}
}
}
}
int main()
{
while(1)
{
cin>>a>>b;
if(a==-1&&b==-1)
break;
memset(row,0,sizeof(row));
cnt=0;
for(int i=0; i<a; i++)
{
for(int j=0; j<a; j++)
{
cin>>matrix[i][j];
}
}
dfs(0,0);
cout<<cnt<<endl;
}
return 0;
}