首先要引入的一个概念就是极限。无限接近却到达不了,这就是极限的内涵。
在这里我们讨论函数的极限。对于函数的极限,我们要分两种情况进行讨论,一种是趋于无限值时的极限;另一种则是趋于有限值时的极限。趋于无限值的过程,其实就是趋于 ∞ \infty ∞ 的过程。 趋于 ∞ \infty ∞ 又分两种情况:趋于 + ∞ +\infty +∞ 和趋于 − ∞ -\infty −∞ ,这个过程就是往 x 轴的左右两侧无限探索过去的过程,就似两道光往 x 轴的左右两侧发射出去,一直到无穷远的距离。趋于有限值,则是趋向有限值所代表的 x 轴上的点的过程,假设这个有限值记作 x 0 x_0 x0 的话,那么就是趋向 x = x 0 x=x_0 x=x0 的过程。
说回趋于无限值的过程,这里所说的趋于某个值,其实都是在讨论 x 轴上的数值。假设现在有个函数 f ( x ) f(x) f(x) , x 轴上的数值趋于 + ∞ +\infty +∞ 或 − ∞ -\infty −∞ 时,我们将之记作 lim x → + ∞ f ( x ) \lim_{x\to +\infty} f(x) limx→+∞f(x) 或 lim x → − ∞ f ( x ) \lim_{x\to -\infty} f(x) limx→−∞f(x) 。当趋向于 x 轴上的 + ∞ +\infty +∞ 或 − ∞ -\infty −∞ 后,总会有一个 y 轴上的值与之对应——当然前提是函数在这些范围内有定义——这个 y 轴上的值可以是某个有限值 y 0 y_0 y0 ,也可以是无限值,当为无限值是,我们称这个极限的值不存在(因为没有确定的值与之对应啊)。
下面要引入的概念就是导数。之前提到了极限这个概念,当我们讨论导数时,极限一般都应用在描述一个变化量 Δ x \Delta x Δx 的趋向上,也就是 Δ x → 0 \Delta x\to0 Δx→0 。
现在我们有一个二次函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2 ,图像在你的脑海中。图像上有 A,B 两点,我们来画一条经过 A,B 两点的直线。设 A 点的坐标为 ( x A , f ( x A ) ) ( x_A,f(x_A)) (xA,f(xA)),B 点的横坐标为 ( x B , f ( x B ) ) ( x_B,f(x_B)) (xB,f(xB)),那么容易得到这条直线的斜率为: f ( x B ) − f ( x A ) x B − x A \frac{f(x_B)-f(x_A)}{x_B-x_A} xB−xAf(xB)−f(xA)
现在我们规定 Δ x = x B − x A \Delta x=x_B-x_A Δx=xB−xA。我们将 A 点固定,让 Δ x → 0 \Delta x \to 0 Δx→0,于是 B 点会越来越靠近点 A,这时候经过点 A 和点 B 的直线也在变化,这条直线无限地趋向于与在 A 点处的切线重合。 这时候我们有:
lim Δ x → 0 f ( x B ) − f ( x A ) x B − x A \lim_{\Delta x\to 0}\frac{f(x_B)-f(x_A)}{x_B-x_A} Δx→0limxB−xAf(xB)−f(xA)
又因为 x B = Δ x + x A x_B=\Delta x+x_A xB=Δx+xA ,于是有:
lim Δ x → 0 f ( Δ x + x A ) − f ( x A ) Δ x \lim_{\Delta x\to 0}\frac{f(\Delta x+x_A)-f(x_A)}{\Delta x} Δx→0limΔxf(Δx+xA)−f(xA)
于是我们就有了导数的定义,也就是上面这个式子。通过上面的式子我们可以知道,导数的本质其实就是函数图像上某一点切线的斜率。
你无法通过一个函数的导数来求这个函数上某个点的函数值,但你可以通过导数来研究这个函数的变化情况,比如,这个函数的单调性是怎么样的?这个函数大概长什么样的?通过这个函数的单调性,又可以进一步得出函数的极大值和极小值所在的点,或者最大值和最小值所在的点。
需要意识到的一点就是,导数的也是函数。既然是函数,我们就可以对其进行求导,于是就有了高阶导数这个概念。高阶导数,也就是导数的导数,或者是导数的导数的导数,又或者是导数的导数的导数的导数的……。通过高阶导数,我们可以研究导数的变化情况,即这个导数的单调性、大概长什么样等等问题。
我们经常见到的函数,形式都是类似于这样的: y = x 2 y=x^2 y=x2, y = 2 e x + x 3 y=2e^x+x^3 y=2ex+x3 ,可以发现这种形式的函数,等号左边是 y y y,等号右边则是一个 x x x 的表达式,我们将这类函数称为显函数,字面意思就是“ y y y 和 x x x 之间的关系很明显的函数”。 其实函数除了显函数这种形式以外,还有其他的形式,这里我们讨论两种:隐函数以及参数方程所确定的函数。
隐函数,照字面意思来理解,就是“ y y y 和 x x x 之间的关系不明显的函数”,比如 e y + x y − e = 0 e^y+xy-e=0 ey+xy−e=0 ,对于这个函数说, y y y 和 x x x 之间的关系并不明显,而且如果你要将这个函数整理成 y y y 来表示 x x x 的形式的话会比较困难。但需要注意, y y y 仍然是 x x x 的函数。你可能会想,既然隐函数长这样,那总有一些隐函数是可以被整理成显函数的形式的吧?当然,有些隐函数是可以的,但是还有一些隐函数,如果你想把它们整理成隐函数的形式的话,是非常困难,甚至不可能的。那么现在让我们来思考一个有趣但乍看起来无用的问题:如何求一个隐函数的导数?一个隐函数虽然可能不能整理成显函数的形式,但绝对可以对一个隐函数进行求导。求导的方法非常简单,只要对等号两边同时进行求导即可。
例如 e y + x y − e = 0 e^y+xy-e=0 ey+xy−e=0 ,对这个式子等号两边进行求导,即 ( e y + x y − e ) ′ = ( 0 ) ′ (e^y+xy-e)'=(0)' (ey+xy−e)′=(0)′,就有 y ′ e y + y + x y ′ = 0 y'e^y+y+xy'=0 y′ey+y+xy′=0,将 y ′ y' y′ 整理到等号左边,可得到 y y y 的导数 y ′ = − y x + e y y'=-\frac{y}{x+e^y} y′=−x+eyy 。
可能你会有些疑惑, e y e^y ey 的导数为什么会变成 y ′ e y y'e^y y′ey ?在这里需要说明的是, y y y 是关于 x x x 的函数,你可以把这里的 y y y 理解成 y = ϕ ( x ) y=\phi(x) y=ϕ(x),那么 e y e^y ey 在这里其实是一个复合函数,只要对其进行复合函数求导即可。