线性代数 | 行列式

第1章 行列式

1. 排列和对换

排列:将 n 个元素排成一列。也称全排列

逆序:当某一对元素的先后次序与标准排列不同时,称这对元素构成一个逆序。

逆序数:一个排列中逆序的总数。

逆序数分别为奇数和偶数的排列称为奇排列偶排列

在排列中,将两个元素的位置进行互换,称为对换

定理:一个排列中任意两个元素对换,排列改变奇偶性。

推论:任意一个排列可经一系列对换变成标准排列。奇排列对换成标准排列需要奇数次对换,偶排列则需要偶数次。

2. n 阶行列式

2.1 定义

n 阶行列式的定义(按行):

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n D=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{nn} \end{array}\right|=\sum_{j_{1} j_{2} \cdots j_{n}}(-1)^{\tau\left(j_{1} j_{2} \cdots j_{n}\right)} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} D=a11a21an1a12a22an2a1na2nann=j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn

简记作: d e t ( a i j ) det(a_{ij}) det(aij)

2.2 特殊的行列式

(过主对角线 同型)上三角行列式 = 下三角行列式 = 对角行列式 = a 11 a 22 ⋯ a n n a_{11}a_{22}\cdots a_{nn} a11a22ann

(过副对角线 同型)山寨上三角 = 山寨下三角 = 山寨对角 = ( − 1 ) 1 2 n ( n − 1 ) a 1 n a 2 ( n − 1 ) ⋯ a n 1 (-1)^{\frac{1}{2}n(n-1)} a_{1n}a_{2(n-1)}\cdots a_{n1} (1)21n(n1)a1na2(n1)an1

3. 行列式的性质

转置行列式 D T D^{T} DT D D D 的转置行列式。

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{nn} \end{array}\right| D=a11a21an1a12a22an2a1na2nann D T = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a n n ∣ D^{T}=\left|\begin{array}{cccc} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{array}\right| DT=a11a12a1na21a22a2nan1an2ann

性质 1:行列式与它的转置行列式相等。

性质 2:对换行列式的两行(列),行列式变号。

推论:若行列式有两行(列)相等,则行列式等于 0 。

性质 3:行列式中某一行(列)的所有元素都乘以 k k k ,等于用 k k k 乘此行列式。

性质 4:若 D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + a i 1 ′ a i 2 + a i 2 ′ ⋯ a i n + a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1}+a_{i 1}^{\prime} & a_{i 2}+a_{i 2}^{\prime} & \cdots & a_{i n}+a_{i n}^{\prime} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right| D=a11ai1+ai1an1a12ai2+ai2an2a1nain+ainann

D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 ′ a i 2 ′ ⋯ a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|+\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1}^{\prime} & a_{i 2}^{\prime} & \cdots & a_{i n}^{\prime} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right| D=a11ai1an1a12ai2an2a1nainann+a11ai1an1a12ai2an2a1nainann

性质 5:把行列式的某一行(列)乘上 k k k 倍,再加到另一行上去,行列式不变。

4. 行列式按行(列)展开

余子式:将行列式中 a i j a_{ij} aij 所在的第 i i i 行和第 j j j 列划去后剩下的部分,称为 a i j a_{ij} aij 的余子式,记作 M i j M_{ij} Mij

代数余子式 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即

D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n ( i = 1 , 2 , ⋯   , n ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}\quad (i=1,2,\cdots,n) D=ai1Ai1+ai2Ai2++ainAin(i=1,2,,n)

D = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j ( j = 1 , 2 , ⋯   , n ) D=a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots+a_{nj}A_{nj}\quad (j=1,2,\cdots,n) D=a1jA1j+a2jA2j++anjAnj(j=1,2,,n)

范德蒙行列式

D n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ n ≥ i > j ≥ 1 ( x i − x j ) D_{n}=\left|\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{array}\right|=\prod_{n \geq i>j \geq 1}\left(x_{i}-x_{j}\right) Dn=1x1x12x1n11x2x22x2n11xnxn2xnn1=ni>j1(xixj)

拉普拉斯行列式
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值