epoch,batchsize,iter的理解

本文解释了机器学习中epoch、batchsize和iter的概念及其相互关系,包括它们如何影响模型训练过程。epoch指所有训练样本被遍历一次,batchsize是在一次迭代中使用的样本数量,iter则是完成一个epoch所需的迭代次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

epoch时期:一个epoch是指将所有训练样本都训练一遍

batchsize批次大小:是指在一次迭代中样本的个数,也即批梯度下降中用来进行一次参数更新的样本数

iter:是指完成一个epoch所需的迭代次数

因此,总样本数/batchsize=iter

总的迭代次数=iter*epoch

在训练样本数通常大于测试样本数,因此训练时的iter也大于测试时的iter

而epoch大小的选取暂时还不知道具体的法则,知道的可以补充

若有错误,望提出

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值