代码随想录跟练打卡Day16

文章介绍了如何计算二叉树的最大深度和最小深度,以及利用完全二叉树特性计算节点数的方法,包括后序遍历、前序遍历和递归策略。
摘要由CSDN通过智能技术生成

1、二叉树的最大深度(即二叉树的高度)

104. 二叉树的最大深度

二叉树的高度:根节点最高             遍历方法:后序遍历,左右中

二叉树的深度:根节点最小             遍历方法:前序遍历,中左右

因此实际采用的是后序遍历方法。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        return self.getdepth(root)
    def getdepth(self,node):
        if not node:
            return 0 
        left = self.getdepth(node.left)
        right = self.getdepth(node.right)
        depth = 1 + max(left,right)
        return depth

2、n叉树的最大深度:唯一区别在于

for child in root.children:

3、二叉树的最小深度

111. 二叉树的最小深度

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        return self.get_depth(root)
    def get_depth(self,node):
        if not node:
            return 0 
        left_depth = self.get_depth(node.left)
        right_depth = self.get_depth(node.right)
        if left_depth == 0 and right_depth >0:
            result = right_depth + 1 
        elif right_depth == 0 and left_depth >0:
            result = left_depth +1 
        else: result = min(left_depth,right_depth)+1
        return result

4、完全二叉树节点数

普通的遍历方法:

时间复杂度O(n),使用递归方法

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def countNodes(self, root: Optional[TreeNode]) -> int:
        return self.get_num(root)
    def get_num(self,node):
        if not node:
            return 0 
        left = self.get_num(node.left)
        right = self.get_num(node.right)
        mid = left+right +1 
        return mid

利用完全二叉树的特性,判断其子树是否为一个满二叉树,如果是,那么其节点个数为2** k - 1 

如何判断是否为满二叉树,利用其完全二叉树的特性:因此仅需判断左子树和右子树的长度是是否相等。

注意点:left_depth的初始长度为1 

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def countNodes(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0 
        left = root.left 
        right = root.right 
        left_depth = 1
        right_depth = 1
        while left:
            left = left.left 
            left_depth += 1
        while right:
            right = right.right 
            right_depth += 1
        if right_depth==left_depth:
            return 2 ** left_depth - 1
        return self.countNodes(root.left)+self.countNodes(root.right)+ 1 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值