【ComfyUI】[进阶工作流] 高级采样器与Refiner的工作流优化

在基础工作流的基础上,我们可以通过替换基础采样器,引入高级采样器和Refiner模型来优化图像生成效果。本文将详细介绍如何构建一个进阶工作流,以实现更精细的图像采样和优化。


1. 删除基础采样器,创建两个高级采样器

首先,我们移除基础工作流中的 基本采样器,并创建 两个高级采样器。这两个高级采样器将用于 分步采样Refiner 细化


2. 配置高级采样器 1(前段采样)

参数设置:

  • add_noise:开启 (enable)
  • steps:30(由于采用两个采样步骤,需要分配步数)
  • end_at_step:20(先进行部分采样)
  • return_with_leftover_noise:开
<think>好的,我现在需要帮助用户解决在ComfyUI中下载模型的问题。用户提到想了解如何在工作流中下载模型,或者找到相关的教程和方法。首先,我应该回忆一下之前提供的引用内容,特别是引用[1]和引用[2],因为它们提到了模型存放的位置和SDXL双模型的结构。 首先,用户可能不太清楚ComfyUI的模型管理方式和下载步骤。根据引用[1],模型需要放在ComfyUI\models\checkpoints目录下,并且可以WebUI共享模型。所以,用户可能需要知道如何正确放置下载的模型文件。但用户的问题是关于下载模型的教程或方法,所以需要指导他们如何获取模型文件,而不仅仅是放置位置。 接下来,引用[2]详细介绍了SDXL模型的构成,包括base和refiner模型,以及它们的用途。这可能意味着用户对SDXL模型特别感兴趣,所以需要提供下载这些模型的具体步骤。同时,用户可能需要了解从哪里下载这些模型,比如官方网站或社区推荐的平台。 用户可能遇到的问题包括:不知道去哪里下载模型、下载后如何正确安装到ComfyUI中,以及如何在工作流中配置双模型。因此,回答需要分步骤说明下载流程,推荐可靠的资源网站,并指导如何放置模型文件。此外,可能还需要提及如何在工作流中添加模型节点,特别是使用双模型时的注意事项。 还需要考虑用户的操作系统,但一般来说,路径结构在Windows和Linux下类似,只是斜杠方向不同。另外,要提醒用户注意模型文件的格式,通常是.safetensors或.ckpt,确保下载正确的文件类型。 另外,用户可能对模型共享感兴趣,即如何在ComfyUI和WebUI之间共享已有的模型,避免重复下载。这需要说明如何通过符号链接或直接复制文件到指定目录来实现。 最后,需要生成相关问题,可能涉及模型管理、工作流配置、常见问题解决等,以帮助用户进一步学习。</think>在ComfyUI中下载和使用模型需要遵循特定的目录结构和工作流配置方法。以下是分步操作指南: ### 一、模型下载安装步骤 1. **获取模型文件** - 访问官方模型库(如HuggingFace、CivitAI)或社区推荐平台 - 推荐SDXL模型下载地址: ```text https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0 https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 ``` - 下载后得到`.safetensors`格式文件,这是当前推荐的安全模型格式 2. **目录结构配置** ```bash ComfyUI ├── models │ ├── checkpoints # 主模型存放位置[^1] │ ├── vae # 变分自编码器 │ ├── lora # LoRA模型 │ └── upscale_models # 超分辨率模型 ``` 将下载的SDXL base模型和refiner模型都放入`checkpoints`目录 3. **模型共享配置(可选)** - 若已安装WebUI,可通过符号链接共享模型: ```bash mklink /J "ComfyUI\models\checkpoints" "WebUI\models\Stable-diffusion" ``` ### 二、工作流配置示例 ![SDXL双模型工作流示意图] 1. 基础模型节点配置 ```python Load Checkpoint -> CLIP Text Encode -> KSampler -> VAE Decode ``` 在节点参数中选择`sd_xl_base_1.0.safetensors` 2. 细化模型衔接配置 ```python KSampler输出 -> Refiner Load Checkpoint -> CLIP Text Encode -> KSampler ``` 细化模型使用`sd_xl_refiner_1.0.safetensors`,噪声水平建议设置为0.3-0.5[^2] ### 三、注意事项 1. 模型文件大小: - Base模型约6.9GB - Refiner模型约6.6GB 2. VRAM需求: - 使用双模型需要至少8GB显存 3. 文件验证: ```bash # 检查模型哈希值 certutil -hashfile your_model.safetensors SHA256 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术小甜甜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值