Flink流处理
1. 输入数据集DataSource
Flink 中可以使用 StreamExecutionEnvironment.getExecutionEnvironment
创建流处理的执行环境。
Flink 中可以使用 StreamExecutionEnvironment.addSource(source) 来为程序添加数据来源。
Flink 已经提供了若干实现好了的 source functions,当然也可以通过实现 SourceFunction
来自定义非并行的source或者实现 ParallelSourceFunction
接口或者扩展 RichParallelSourceFunction
来自定义并行的 source。
Flink在流处理上的source和在批处理上的source基本一致。大致有4大类:
-
基于本地集合的source(Collection-based-source)
-
基于文件的source(File-based-source)- 读取文本文件,即符合 TextInputFormat 规范的文件,并将其作为字符串返回
-
基于网络套接字的source(Socket-based-source)- 从 socket 读取。元素可以用分隔符切分。
-
自定义的source(Custom-source)
1.1. 基于集合的source
//创建流处理的执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//使用env.fromElements()来创建数据源
val dataStream: DataStream[String] = env.fromElements(“spark”, “flink”)
import org.apache.flink.streaming.api.scala.{
DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.api.scala._
import scala.collection.immutable.{
Queue, Stack}
import scala.collection.mutable
import scala.collection.mutable.{
ArrayBuffer, ListBuffer}
object StreamingDemoFromCollectionSource {
def main(args: Array[String]): Unit = {
val senv = StreamExecutionEnvironment.getExecutionEnvironment
//0.用element创建DataStream(fromElements)
val ds0: DataStream[String] = senv.fromElements("spark", "flink")
ds0.print()
//1.用Tuple创建DataStream(fromElements)
val ds1: DataStream[(Int, String)] = senv.fromElements((1, "spark"), (2, "flink"))
ds1.print()
//2.用Array创建DataStream
val ds2: DataStream[String] = senv.fromCollection(Array("spark", "flink"))
ds2.print()
//3.用ArrayBuffer创建DataStream
val ds3: DataStream[String] = senv.fromCollection(ArrayBuffer("spark", "flink"))
ds3.print()
//4.用List创建DataStream
val ds4: DataStream[String] = senv.fromCollection(List("spark", "flink"))
ds4.print()
//5.用List创建DataStream
val ds5: DataStream[String] = senv.fromCollection(ListBuffer("spark", "flink"))
ds5.print()
//6.用Vector创建DataStream
val ds6: DataStream[String] = senv.fromCollection(Vector("spark", "flink"))
ds6.print()
//7.用Queue创建DataStream
val ds7: DataStream[String] = senv.fromCollection(Queue("spark", "flink"))
ds7.print()
//8.用Stack创建DataStream
val ds8: DataStream[String] = senv.fromCollection(Stack("spark", "flink"))
ds8.print()
//9.用Stream创建DataStream(Stream相当于lazy List,避免在中间过程中生成不必要的集合)
val ds9: DataStream[String] = senv.fromCollection(Stream("spark", "flink"))
ds9.print()
//10.用Seq创建DataStream
val ds10: DataStream[String] = senv.fromCollection(Seq("spark", "flink"))
ds10.print()
//11.用Set创建DataStream(不支持)
//val ds11: DataStream[String] = senv.fromCollection(Set("spark", "flink"))
//ds11.print()
//12.用Iterable创建DataStream(不支持)
//val ds12: DataStream[String] = senv.fromCollection(Iterable("spark", "flink"))
//ds12.print()
//13.用ArraySeq创建DataStream
val ds13: DataStream[String] = senv.fromCollection(mutable.ArraySeq("spark", "flink"))
ds13.print()
//14.用ArrayStack创建DataStream
val ds14: DataStream[String] = senv.fromCollection(mutable.ArrayStack("spark", "flink"))
ds14.print()
//15.用Map创建DataStream(不支持)
//val ds15: DataStream[(Int, String)] = senv.fromCollection(Map(1 -> "spark", 2 -> "flink"))
//ds15.print()
//16.用Range创建DataStream
val ds16: DataStream[Int] = senv.fromCollection(Range(1, 9))
ds16.print()
//17.用fromElements创建DataStream
val ds17: DataStream[Long] = senv.generateSequence(1, 9)
ds17.print()
senv.execute(this.getClass.getName)
}
}
1.2. 基于文件的source
Flink的流处理可以直接通过readTextFile()
方法读取文件来创建数据源,方法如下:
object DataSource_CSV {
def main(args: Array[String]): Unit = {
// 1. 获取流处理运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 2. 读取文件
val textDataStream: DataStream[String] = env.readTextFile("hdfs://node01:8020/flink-datas/score.csv")
// 3. 打印数据
textDataStream.print()
// 4. 执行程序
env.execute()
}
}
1.3. 基于网络套接字的source
上面两种方式创建的数据源一般都是固定的.如果需要源源不断的产生数据,可以使用socket的方式来获取数据,通过调用socketTextStream()
方法
示例
编写Flink程序,接收socket
的单词数据,并以空格进行单词拆分打印。
步骤
-
获取流处理运行环境
-
构建socket流数据源,并指定IP地址和端口号
-
对接收到的数据进行空格拆分
-
打印输出
-
启动执行
-
在Linux中,使用
nc -lk 端口号
监听端口,并发送单词**安装nc: ** yum install -y nc
nc -lk 9999 监听9999端口的信息
代码
object SocketSource {
def main(args: Array[String]): Unit = {
//1. 获取流处理运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 2. 构建socket流数据源,并指定IP地址和端口号
// hadoop hadoop hive spark
val socketDataStream: DataStream[String] = env.socketTextStream("node01", 9999)
// 3. 转换,以空格拆分单词
val mapDataSet: DataStream[String] = socketDataStream.flatMap(_.split(" "))
// 4. 打印输出
mapDataSet.print()
// 5. 启动执行
env.execute("WordCount_Stream")
}
}
1.4. 自定义source
我们也可以通过去实现SourceFunction
或者它的子类RichSourceFunction
类来自定义实现一些自定义的source,Kafka创建source数据源类FlinkKafkaConsumer010
也是采用类似的方式。
1.4.1. 自定义数据源
示例:
自定义数据源, 每1秒钟随机生成一条订单信息(订单ID
、用户ID
、订单金额
、时间戳
)
要求:
-
随机生成订单ID(UUID)
-
随机生成用户ID(0-2)
-
随机生成订单金额(0-100)
-
时间戳为当前系统时间
开发步骤:
-
创建订单样例类
-
获取流处理环境
-
创建自定义数据源
- 循环1000次
- 随机构建订单信息
- 上下文收集数据
- 每隔一秒执行一次循环
-
打印数据
-
执行任务
代码:
object StreamFlinkSqlDemo {
// 创建一个订单样例类Order,包含四个字段(订单ID、用户ID、订单金额、时间戳)
case class Order(id: String, userId: Int, money: Long, createTime: Long)
def main(args: Array[String]): Unit = {
// 1. 获取流处理运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 2. 创建一个自定义数据源
val orderDataStream = env.addSource(new RichSourceFunction[Order] {
override def run(ctx: SourceFunction.SourceContext[Order]): Unit = {
// 使用for循环生成1000个订单
for (i <- 0 until 1000) {
// 随机生成订单ID(UUID)
val id = UUID.randomUUID().toString
// 随机生成用户ID(0-2)
val userId = Random.nextInt(3)
// 随机生成订单金额(0-100)
val money = Random.nextInt(101