Question Answering over Freebase with Multi-Column Convolutional Neural Net论文解析

论文出处:ACL 2015
论文地址:https://www.aclweb.org/anthology/P15-1026/

摘要

  • 引入多列卷积神经网络(MCCNNs)从三个不同的角度(即答案路径、答案文本和答案类型)理解问题,并学习它们的分布表示。
  • 在知识库中共同学习实体和关系的低维嵌入。
  • 利用问题释义,以多任务学习的方式训练multi-task网络。
  • WEBQUESTIONS

设置

  • 给出一个自然语言问题。我们从FREEBASE中检索相关的实体和属性,并将它们作为候选答案。

方法

  1. 和实体相关节点被视为候选答案节点 C q C_q Cq
  2. 对于每个候选答案 a a a,该模型预测一个分数 S ( q , a ) S(q,a) S(q,a),以确定该答案是否正确。
  3. 每一个问题和答案都有三部分的表征,分别为:路径、文本和类型, f 1 ( q ) , f 2 ( q ) , f 3 ( q ) f1(q),f2(q),f3(q) f1(q),f2(q),f3(q) g 1 ( a ) , g 2 ( a ) , g 3 ( a ) g1(a),g2(a),g3(a) g1(a),g2(a),g3(a)
    在这里插入图片描述

候选生成

  1. eebase Search API (Bollacker et al., 2008)检索问题中的实体。
  2. 实体就检索名词短语。
  3. 到两条内的额节点作为候选答案,被标注为候选集 C q C_q Cq.

MCCNNs

在这里插入图片描述

  1. 编码层:对于问题 q = w 1 , w 2 , . . . , w n q=w_1,w_2,...,w_n q=w1,w2,...,wn。transforms层将每个单词转换成一个向量 w j = W v u ( w j ) w_j=W_vu(w_j) wj=Wvu(wj),其中 W v ∈ R d v × ∣ V ∣ W_v∈R^{d_v \times |V|} WvRdv×V 是单词嵌入矩阵, u ( w j ) ∈ ( 0 , 1 ) ∣ V ∣ u(w_j)∈ (0,1)^{|V|} u(wj)(0,1)V w j w_j wj的one-hot表示, ∣ V ∣ |V| V是词汇表大小。word embedding是参数,并在训练过程中更新。
  2. 卷积层通过滑窗的形式计算表征。
  3. 使用最大赤化成得到固定尺寸向量表示。

编码候选答案

答案路径

答案路径通过的向量表征通过 g 1 ( a ) g1(a) g1(a)来计算:
g 1 ( a ) = 1 ∣ ∣ u p ( a ) ∣ ∣ 1 W p u p ( a ) g_1(a) = \frac{1}{||u_p(a)||_1}W_p u_p(a) g1(a)=up(a)11Wpup(a)

其中 u p ( a ) u_p(a) up(a)是一个二进制向量,表示应答路径中每个关系的存在与否, W p W_p Wp是一个参数矩阵, ∣ R ∣ |R| R是关系的数量。

答案上下文

连接答案的一度实体和关系被认为是答案的上下文。用来处理问句中的约束。其中上下文的表征为 g 2 ( a ) g2(a) g2(a),被表示为:
g 2 ( a ) = 1 ∣ ∣ u c ( a ) ∣ ∣ 1 W c u c ( a ) g_2(a) = \frac{1}{||u_c(a)||_1}W_c u_c(a) g2(a)=uc(a)11Wcuc(a)
其中Wc是参数矩阵, u c ( a ) u_c(a) uc(a)是一个二元向量,表示上下文节点的存在与否,而 ∣ C ∣ |C| C是答案上下文中出现的实体和关系的数量。

答案类型

关系的向量表征被表示为 g 3 ( a ) g3(a) g3(a),倍表示为:
g 3 ( a ) = 1 ∣ ∣ u t ( a ) ∣ ∣ 1 W t u t ( a ) g_3(a) = \frac{1}{||u_t(a)||_1}W_t u_t(a) g3(a)=ut(a)11Wtut(a)

其中 W t Wt Wt是类型编码矩阵, u t ( a ) u_t(a) ut(a)是一个二进制向量,表示答案类型的存在或意义, ∣ T ∣ |T| T是类型的数量。

模型训练

对于每一个正确的答案,随机从 C q C_q Cq中采样 k k k个负样本进行训练。使用合叶损失优化,其中间隔阈值设定为 m m m

推理
  • 推理的过程取得分最高的作为答案。

  • 针对有些问题有多个答案,和最高分数差训练过程中设置的阈值 m m m即为正确的答案。

  • 启发式学习的方法处理候选样本过多的问题。

多任务学习中的问题释义

使用问题释义数据集WIKIANSWERS来概括在问答训练集中不存在的词和问题模式。

实验

在这里插入图片描述

消融实验

在这里插入图片描述

突出词检测

在这里插入图片描述

实验

在这里插入图片描述

错误分析
  1. 实体链接错误,导致路径生成错误。
  2. 时间意识问题,在判断的过程中需要对问句中的描述进行时间的对比。
  3. 歧义问题。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值