模型推理:YOLOv5 目标检测

本实验详述在寒武纪MLU370 MagicMind平台上,如何进行YOLOv5m目标检测模型的INT8量化、集成后处理自定义算子的推理应用开发,包括模型工程准备、模型转换和推理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、内容和目标

1. 实验内容
  1. 本实验主要介绍基于寒武纪 MLU370 MagicMind 平台的YOLOv5m (PyTorch, Python, INT8)目标检测推理应用的开发方法,其中性能优化操作包括:INT8量化、集成后处理自定义算子。

  2. 基于 YOLOv5m 检测网络和寒武纪 MLU370 MagicMind 平台,您可以读取本地图像数据作为输入,对图像数据中的目标物体进行时识别,得到物体的在图像中的坐标、置信度以及类别。

2. 实验目标
  1. 掌握使用寒武纪推理引擎 MagicMind 进行模型量化推理及融合算子的基本方法。

  2. 理解 YOLOv5m 模型的整体网络结构及其开发调试细节。

二、前置知识

1. 寒武纪软硬件平台介绍

  • 硬件:寒武纪 MLU370 AI 加速卡

  • 框架:PyTorch 1.6、MagicMind 0.14.0

2. MagicMind 介绍

MagicMind 是⾯向寒武纪 MLU370 (寒武纪处理器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shengyin714959

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值