一、内容和目标
1. 实验内容
-
本实验主要介绍基于寒武纪 MLU370 MagicMind 平台的YOLOv5m (PyTorch, Python, INT8)目标检测推理应用的开发方法,其中性能优化操作包括:INT8量化、集成后处理自定义算子。
-
基于 YOLOv5m 检测网络和寒武纪 MLU370 MagicMind 平台,您可以读取本地图像数据作为输入,对图像数据中的目标物体进行时识别,得到物体的在图像中的坐标、置信度以及类别。
2. 实验目标
-
掌握使用寒武纪推理引擎 MagicMind 进行模型量化推理及融合算子的基本方法。
-
理解 YOLOv5m 模型的整体网络结构及其开发调试细节。
二、前置知识
1. 寒武纪软硬件平台介绍
-
硬件:寒武纪 MLU370 AI 加速卡
-
框架:PyTorch 1.6、MagicMind 0.14.0
2. MagicMind 介绍
MagicMind 是⾯向寒武纪 MLU370 (寒武纪处理器