联邦学习 | Non-IID数据 论文:测量联邦视觉分类中不相同数据分布的影响

该博客探讨了联邦学习中Non-IID数据的生成方法,通过迪利克雷分布模拟不同程度的Non-IID情况,分析了数据量、本地迭代轮数、学习率等参数对性能的影响。提出了一种基于动量的解决方案,能有效缓解Non-IID导致的性能下降。研究基于CIFAR-10数据集,展示了动量更新在优化学习率方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要内容:

1、基于迪利克雷分布,提出了一种FL中Non-IID数据的生成方法;

2、对不同程度的Non-IID数据下,进行了较多的对比试验,研究客户端数据量、本地迭代轮数、学习率等参数对性能的影响;

3、提出了一种基于动量的解决方案,可以有效缓解Non-IID带来的性能下降。

论文地址:https://arxiv.org/pdf/1909.06335.pdf

01 Introduction 介绍

介绍了一下FL和Non-IID数据的背景知识,不清楚的小伙伴可以看之前的文章。

02 Related Work 相关工作

在FL中图像分类数据集的相关生成工作,一部分是在MNIST、CIFAR-10等数据集上进行划分,存在分布极端、划分数据池不够大等问题,不符合实际情况;另一部分工作就是使用

的Dirichlet分布来合成Non-IID数据集。作者主要是使用连续的  生成一系列分布,来研究超参数的设置和优化方案。

下图中2018那篇论文之前的文章分享给过,有兴趣的小伙伴可以看看:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值