机器学习算法
文章平均质量分 53
shenxiaolu1984
这个作者很懒,什么都没留下…
展开
-
【深度学习】残差结构:1000层网络
本文介绍深度神经网络从几层加深到一千层的各种关键技术,尤其聚焦残差结构(Residual)在其中发挥的作用。原创 2016-10-12 17:53:00 · 9748 阅读 · 0 评论 -
【深度学习】Inception层详解
本文参考Torch的dpnn包中Inception层的源码,讲解该模块参数含义以及网络结构。核心思想Inception模块的起点是类似下图的结构:通道从M变换到N,把多个不同尺寸的卷积结果串接(concat)起来。 由于M,N往往很大,这种结构的模型大小和运算量都不小。 卷积运算,输入M层,输出N层,核尺寸k。输入数据大小H*W。 卷积参数数量:weight + b原创 2017-04-09 18:28:37 · 12742 阅读 · 2 评论 -
蒙特卡洛-马尔科夫链(MCMC)初步
MCMC(Markov Chain Monte Carlo)是一种经典的概率分布采样方法。本文对其概念和常见算法做简单梳理。解决什么问题?我们常常遇到这样的问题:模型构建好之后,有一个概率p(x)p(x)(称为目标分布),不能显式的给出其表达,只能生成一系列符合这个分布的xx。这种问题称为“采样”。特别地,在贝叶斯方法中,关注的是后验概率p(x|D)p(x|D)。在给定观测DD的情原创 2016-01-25 21:25:18 · 15092 阅读 · 1 评论 -
【优化】核方法(kernel method)超简说明
本文不做数学推导,仅从最简单的概念上讲解核方法。问题有训练样本xix_i,其标定yiy_i, i=1,2…N。 欲求解一个回归函数f(z)f(z),希望f(xi)=yif(x_i)=y_i。线性回归使用线性函数来预测,即f(z)=wTzf(z)=w^Tz。 求解方法有许多种,以脊回归(Ridge Regression)为例,最小化下列函数即可: λ||w||2+∑i(原创 2016-03-12 12:59:08 · 21246 阅读 · 14 评论 -
【优化】梯度下降 收敛性 证明
梯度下降方法的收敛率是O(1/t)O(1/t)。本文首先介绍梯度下降算法的定义,之后解释收敛性的意义,并给出梯度下降算法收敛性详细证明过程1。梯度下降算法设系统参数为xx。对于样本ii,其代价函数为fi(x)f_i(x)。在n个样本组成的训练集上,其整体代价函数为: f(x)=∑i=1nfi(x)f(x)=\sum_{i=1}^nf_i(x)要求ω\omega使得上式最小,原创 2016-09-19 23:01:34 · 30271 阅读 · 13 评论 -
【深度学习】RNN的梯度消失/爆炸与正交初始化
在训练较为复杂的RNN类型网络时,有时会采取正交方法初始化(orthogonal initialization)网络参数。本文用简单的例子介绍其中的原因。本文较大程度参考了这篇博客。简单例子RNN具有如下形式: ht=fh(W⋅ht−1+V⋅xt)h_t=f_h(W\cdot h_{t-1}+V\cdot x_t)yt=fy(U⋅ht)y_t = f_y(U\cdot h原创 2017-05-09 22:40:22 · 12526 阅读 · 0 评论 -
【推荐系统】Factorization Machine
本文介绍推荐系统基础算法Factorization Machines的模型思想、计算与优化方法。原创 2017-12-11 21:41:18 · 8994 阅读 · 2 评论 -
【深度学习】为什么深度学习需要大内存?
介绍深度学习中内存的开销来源,以及降低内存需求的几种解决方案。翻译 2017-05-12 15:30:50 · 30106 阅读 · 4 评论 -
蒙特卡洛-马尔科夫链(MCMC)的混合速度
在应用Markov Chain Monte Carlo的文章中,常常遇到这样的说法:“马氏链的混合速度”,“某马氏链混合很慢”,“转移概率严重尖峰(peaked)”。本文用简单的例子讲解这一概念。原创 2016-01-21 21:53:30 · 5801 阅读 · 1 评论 -
【优化】logistic和softmax代价函数
logistic代价和softmax代价原创 2016-03-29 22:01:05 · 3918 阅读 · 1 评论 -
【增强学习】Torch中的增强学习层
本文利用Torch中的代码Reinforce.lua对强化学习做进行初步探索。给出一个最简单的源码作为例子。原创 2016-06-17 13:31:52 · 5003 阅读 · 0 评论 -
【循环网络】simple recurrent network源码解读
利用Torch中的rnn库展示RNN基本流程。原创 2016-06-20 17:44:20 · 2363 阅读 · 0 评论 -
【循环网络】Torch中的rnn
本文从零开始,动手玩一玩Nicolas Leonard在Torch框架下提供的rnn库。这里以每一个类为单位,使用简单的例子进行演练,比作者提供的一系列demo更加好懂。原创 2016-07-12 11:20:03 · 2584 阅读 · 0 评论 -
【深度学习】包教包会LSTM
本文本着由浅入深原则介绍LSTM模块结构,使用流程图梳理公式,保证看完过目不忘,神清气爽。原创 2016-11-15 19:14:32 · 8541 阅读 · 1 评论 -
【深度学习】常见优化算法
本文介绍常见数值优化算法,其中的一阶方法在现代的神经网络框架(tensorflow, torch)中已经是标准配置,介绍较详细。原创 2016-10-09 19:25:57 · 13910 阅读 · 0 评论 -
【深度学习】一张图看懂Receptive Field
本文尝试用最简明直白的图示,帮助理解和记忆Receptive Field的计算方法。什么是Receptive Field?在CNN中,第n层特征图中一个像素,对应第1层(输入图像)的像素数,即为该层的Receptive Field,简称RF。基本思路网络第1层输入,第n" role="presentation" style="position: relative;">nn原创 2017-12-15 22:36:03 · 19855 阅读 · 1 评论