【深度学习】为什么深度学习需要大内存?

本文主要译介自Graphcore在2017年1月的这篇博客: Why is so much memory needed for deep neural networks。介绍了深度学习中内存的开销,以及降低内存需求的几种解决方案。

为便于阅读,本文修改了原文分段,并添加更详细的计算说明。

深度学习的内存消耗在哪里?

回顾:简单例子

考虑一个单层线性网络,附带一个激活函数:
h = w 1 x + w 2 h=w_1x+w_2 h=w1x+w2

y = f ( h ) y=f(h) y=f(h)

代价函数: E = ∣ ∣ y − y ‾ ∣ ∣ 2 E=||y-\overline{y}||^2 E=yy2

在训练时,每一个迭代要记录以下数据:

  • 当前模型参数 w 1 , w 2 w_1,w_2 w1,w2
  • 前向运算各层响应: x , h , y x, h, y x,h,y

这样,可以在后向运算中用梯度下降更新参数:
Δ w 1 = η ⋅ ∂ E ∂ w 1 = η ⋅ 2 ( y − y ‾ ) ⋅ f ′ ( h ) ⋅ x \Delta w_1=\eta\cdot \frac{\partial E}{\partial w_1}=\eta \cdot 2(y-\overline{y})\cdot f'(h) \cdot x Δw1=ηw1E=η2(yy)f(h)x

Δ w 2 = η ⋅ ∂ E ∂ w 1 = η ⋅ 2 ( y − y ‾ ) ⋅ f ′ ( h ) \Delta w_2=\eta\cdot \frac{\partial E}{\partial w_1}=\eta \cdot 2(y-\overline{y})\cdot f'(h) Δw2=ηw1E=η2(yy)f(h)

内存消耗的三方面

输入数据

很小,不做考量。

256256的彩色图像:25625631 byte= 192KB

模型参数

较大,和模型复杂度有关。

入门级的MNIST识别网络有6.6 million参数,使用32-bit浮点精度,占内存:6.6M * 32 bit = 25MB

50层的ResNet有26 million参数,占内存:26M * 32 bit = 99MB

当然,你可以设计精简的网络来处理很复杂的问题。

各层响应

较大,同样和模型复杂度有关。

50层的ResNet有16 million响应,占内存:16M*32bit = 64MB

响应和模型参数的数量并没有直接关系。卷积层可以有很大尺寸的响应,但只有很少的参数;激活层甚至可以没有参数。

– 这样看起来也不大啊?几百兆而已。
– 往下看。

batch的影响

为了有效利用GPU的SIMD机制,要把数据以mini-batch的形式输入网络。
如果要用32 bit的浮点数填满常见的1024 bit通路,需要32个样本同时计算。

在使用mini-batch时,模型参数依然只保存一份,但各层响应需要按mini-batch大小翻倍。

50层的ResNet,mini-batch=32,各层相应占内存:64MB*32 = 2GB

卷积计算的影响

H × W H\times W H×W的输入图像为 X X X K × K K\times K K×K的卷积核为 R R R,符合我们直觉的卷积是这样计算的。

对每一个输出位置,计算小块对位乘法结果之和。
Y ( h , w ) = ∑ X k , k s ( h , w ) ⊙ R Y(h,w) = \sum{X^s_{k,k}(h,w) \odot R} Y(h,w)=Xk,ks(h,w)R

h = 1 : H , w = 1 : W h=1:H, w=1:W h=1:H,w=1:W
其中, X k , k s ( h , w ) X^s_{k,k}(h,w) Xk,ks(h,w)表示输入图像中,以 h , w h,w h,w为中心,尺寸为 K × K K\times K K×K的子图像。

但是,这种零碎运算很慢

在深度学习库中,一般会采用lowering的方式,把卷积计算转换成矩阵乘法

首先,把输入图像分别平移不同距离,得到 K 2 K^2 K2 H × W H\times W H×W的位移图像,串接成 H × W × K 2 H\times W \times K^2 H×W×K2的矩阵 X ‾ \overline{X} X
之后,把 K × K K\times K K×K的卷积核按照同样顺序拉伸成 K 2 × 1 K^2\times 1 K2×1的矩阵 R ‾ \overline{R} R
卷积结果通过一次矩阵乘法获得:
Y = X ‾ ⋅ R ‾ Y=\overline{X}\cdot \overline{R} Y=XR

输入输出为多通道时,方法类似,详情参见这篇博客

在计算此类卷积时,前层响应 X X X需要扩大 K 2 K^2 K2倍。

50层的ResNet,考虑lowering效应时,各层响应占内存7.5GB

使用低精度不能降内存

为了有效利用SIMD,如果精度降低一倍,batch大小要扩大一倍。不能降低内存消耗。

降内存的有效方法

in-place运算

不开辟新内存,直接重写原有响应。
很多激活函数都可以这样操作。
复杂一些,通过分析整个网络图,可以找出只需要用一次的响应,它可以和后续响应共享内存。例如MxNet的memory sharing机制。

综合运用这种方法,MIT在2016年的这篇论文能够把内存降低两到三倍。

计算换存储

找出那些容易计算的响应结果(例如激活函数层的输出)不与存储,在需要使用的时候临时计算。

使用这种方法,MxNet的这个例子能够把50层的ResNet网络占用的内存减小四倍。

类似地,DeepMind在2016年的这篇论文用RNN处理长度为1000的序列,内存占用降低20倍,计算量增加30%。

百度语音在2016年的这篇论文同样针对RNN,内存占用降低16倍,可以训练100层网络。

当然,还有Graphcore自家的IPU,也通过存储和计算的平衡来节约资源。

Graphcore本身是一家机器学习芯片初创公司,行文中难免夹带私货,请明辨。

  • 13
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
深度学习对计算机配置有一定的要求,以下是一般推荐的深度学习电脑配置: 1. GPU:深度学习中常用的计算密集型任务可以受益于GPU加速。推荐使用NVIDIA的GPU,如GeForce系列或Tesla系列。较新的GPU通常具有更好的性能和更多的显存,这对于处理大规模数据和复杂模型很重要。 2. 内存(RAM):深度学习模型通常需要大量的内存来存储模型参数和中间计算结果。至少建议使用16GB或更多的内存,但对于大型模型和大规模数据集,32GB或更多的内存可能会更好。 3. 处理器(CPU):虽然GPU是深度学习任务的主要计算设备,但CPU仍然承担着一些任务,如数据预处理、模型加载和训练过程中的一些计算。较新且性能的多核处理器(如Intel Core i7或更级别)可以提整体性能。 4. 存储:深度学习需要大量的存储空间来存储数据集、模型和训练过程中的中间结果。建议使用SSD固态硬盘,它们提供更快的读写速度,加快了数据加载和保存的速度。 5. 其他硬件:除了上述组件,还需要一个稳定的电源供应和足够的散热系统,以确保计算机在负载下运行时保持稳定且不过热。 此外,为了更好地利用硬件资源,建议在深度学习中使用适当的软件和工具,如CUDA和cuDNN来加速GPU计算,以及深度学习框架(如TensorFlow、PyTorch等)来简化模型的构建和训练过程。 总之,深度学习对计算机配置有一定要求,较新且性能良好的GPU、足够的内存和存储空间是常见的需求。根据具体任务的规模和需求,可以根据上述建议进行配置。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值