XGBoost解决多分类问题
写在前面的话
XGBoost官方给的二分类问题的
例子是区别蘑菇有无毒,数据集和代码都可以在xgboost中的demo文件夹对应找到,我是用的Anaconda安装的XGBoost,实现起来比较容易。唯一的梗就是在终端中运行所给命令: ../../xgboost mushroom.conf 时会报错,是路径设置的问题,所以我干脆把xgboost文件夹下的xgboost.exe拷到了mushroom.conf配置文件所在文件夹下,这样直接定位到该文件夹下就可以运行: xgboost mushroom.conf。二分类数据预处理,也就是data wraggling部分的代码有一定的借鉴意义,值得一看。
多分类问题给的
例子是根据34个特征识别6种皮肤病,由于终端中运行runexp.sh没有反应,也不报错,所以我干脆把数据集下载到对应的demo文件夹下了,主要的代码如下,原来有部分比较难懂的语句我自己加了一些注释,这样理解起来就会顺畅多了。
[python]
view plain
copy
- #! /usr/bin/python
- import numpy as np
- import xgboost as xgb
- # label need to be 0 to num_class -1
- # if col 33 is '?' let it be 1 else 0, col 34 substract 1
- data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1 } )
- sz = data.shape
- train = data[:int(sz[0] * 0.7), :] # take row 1-256 as training set
- test = data[int(sz[0] * 0.7):, :] # take row 257-366 as testing set
- train_X = train[:,0:33]
- train_Y = train[:, 34]
- test_X = test[:,0:33]
- test_Y = test[:, 34]
- xg_train = xgb.DMatrix( train_X, label=train_Y)
- xg_test = xgb.DMatrix(test_X, label=test_Y)
- # setup parameters for xgboost
- param = {}
- # use softmax multi-class classification
- param['objective'] = 'multi:softmax'
- # scale weight of positive examples
- param['eta'] = 0.1
- param['max_depth'] = 6
- param['silent'] = 1
- param['nthread'] = 4
- param['num_class'] = 6
- watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
- num_round = 5
- bst = xgb.train(param, xg_train, num_round, watchlist );
- # get prediction
- pred = bst.predict( xg_test );
- print ('predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
- # do the same thing again, but output probabilities
- param['objective'] = 'multi:softprob'
- bst = xgb.train(param, xg_train, num_round, watchlist );
- # Note: this convention has been changed since xgboost-unity
- # get prediction, this is in 1D array, need reshape to (ndata, nclass)
- yprob = bst.predict( xg_test ).reshape( test_Y.shape[0], 6 )
- ylabel = np.argmax(yprob, axis=1) # return the index of the biggest pro
- print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
结果如下:
[python]
view plain
copy
- [0] train-merror:0.011719 test-merror:0.127273
- [1] train-merror:0.015625 test-merror:0.127273
- [2] train-merror:0.011719 test-merror:0.109091
- [3] train-merror:0.007812 test-merror:0.081818
- [4] train-merror:0.007812 test-merror:0.090909
- predicting, classification error=0.090909
- [0] train-merror:0.011719 test-merror:0.127273
- [1] train-merror:0.015625 test-merror:0.127273
- [2] train-merror:0.011719 test-merror:0.109091
- [3] train-merror:0.007812 test-merror:0.081818
- [4] train-merror:0.007812 test-merror:0.090909
- predicting, classification error=0.090909
不管是直接返回诊断类型,还是返回各类型的概率,然后取概率最大的那个对应的类型的index,结果都是一样的。