xgboost 学习笔记(树的分裂过程分析)

本文深入探讨了xgboost作为boosting算法的工作原理,特别是其构建决策树的过程。通过贪心算法寻找最优分割点以降低目标损失,详细解释了分裂依据、时间复杂度以及如何处理缺失特征数据。此外,讨论了二阶导数在xgboost中的作用和优势,并指出xgboost支持多种目标损失函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两大集成学习的框架:bagging 和 boosting。xgboost 是属于boosting系列的算法。

这篇文章主要介绍一下,xgboost  模型的训练过程。

从宏观来说,就是创建一棵树拟合目标函数,期望loss 最小,然后构建另外一个树来拟合前面所有树的残差。

那从每一棵树来说,它是如何构造一棵树的呢。具体的

从第0层开始,如果分裂能够比不分裂带来提升,那么就选择分裂,看一下。所以在分裂的过程当中就考虑了 normalization。

首先,1) 只有一个节点,这个节点是包含了所有的训练数据,也就是不分裂,只有一个叶子节点,那么这个叶子节点的分数应该是。

举个例子,下面这个图是从原始的无分裂的状态,分裂了两次之后的结果。

下面看xgboost 是根据什么来选择是否分裂的?xgboost 使用了贪心算法。其实是根据当前的每个feature的每个split 进行 object gain 评估。选择能够降低目前的object loss 最好的点,也就是Gain (收益)最大的点。 

1) 遍历所有的feature 1....d

2)    遍历每个feature 的 split point,计算object gain。

3) 找到最大的split point,然后那个点就是当前最好的选择。如果所有的选择都只带来negative gain的ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值