常用数据分析模型:购物篮模型——商品关联分析

1.用途

通过对用户消费记录数据的挖掘和分析,找出用户购买习惯的一些潜在规律,从而可以为用户提供他们想要的搭配或套餐。套餐销量的提升一般会带来客单价的提升,从而提高公司收益。

2.介绍

关键衡量指标有三个:支持度、置信度、提升度。通过三个指标,判断商品之间的关联程度。

1)支持度:

支持度是指A和B两个商品同时被购买的概率,代表了这个组合的可靠程度
支持度=同时购买AB订单数/总购买订单数

2)置信度:

置信度是指先购买A之后又购买了B的条件概率,是买了A和B的订单占所有买了A的订单里的占比。代表买了A的用户有多大概率会再买B,即买A产品对B产品产生了多大的影响。
置信度=同时购买A和B订单数/购买A的订单数

3)提升度:

在购买A商品的情况下,有多大概率再买B商品
提升度=支持度/((购买A次数/总购买订单数)*(购买B次数/总购买订单数))
在这里插入图片描述

3.excel方法

1)数据需求:

订单号、订单明细(购买了什么商品)
在这里插入图片描述

2)excel公式

购买组合的订单(组合无先后顺序)=COUNTIF(B:B,"*"&D2&"*"&E2&"*")+COUNTIF(B:B,"*"&E2&"*"&D2&"*")
购买第一种产品的订单数=COUNTIF(B:B,"*"&D2&"*")
购买第二种产品的订单数=COUNTIF(B:B,"*"&E2&"*")
支持度=G列/订单总数
置信度(1对2)=G列/H列
提升度(1对2)=支持度/((H列/订单总数)*(I列/订单总数))

在这里插入图片描述

4.应用

提升度>1的搭配,组合售卖能带来提升。
在这里插入图片描述
绘制色阶图,深绿&浅绿为推荐组合。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值