1.用途
通过对用户消费记录数据的挖掘和分析,找出用户购买习惯的一些潜在规律,从而可以为用户提供他们想要的搭配或套餐。套餐销量的提升一般会带来客单价的提升,从而提高公司收益。
2.介绍
关键衡量指标有三个:支持度、置信度、提升度。通过三个指标,判断商品之间的关联程度。
1)支持度:
支持度是指A和B两个商品同时被购买的概率,代表了这个组合的可靠程度
支持度=同时购买AB订单数/总购买订单数
2)置信度:
置信度是指先购买A之后又购买了B的条件概率,是买了A和B的订单占所有买了A的订单里的占比。代表买了A的用户有多大概率会再买B,即买A产品对B产品产生了多大的影响。
置信度=同时购买A和B订单数/购买A的订单数
3)提升度:
在购买A商品的情况下,有多大概率再买B商品
提升度=支持度/((购买A次数/总购买订单数)*(购买B次数/总购买订单数))
3.excel方法
1)数据需求:
订单号、订单明细(购买了什么商品)
2)excel公式
购买组合的订单(组合无先后顺序)=COUNTIF(B:B,"*"&D2&"*"&E2&"*")+COUNTIF(B:B,"*"&E2&"*"&D2&"*")
购买第一种产品的订单数=COUNTIF(B:B,"*"&D2&"*")
购买第二种产品的订单数=COUNTIF(B:B,"*"&E2&"*")
支持度=G列/订单总数
置信度(1对2)=G列/H列
提升度(1对2)=支持度/((H列/订单总数)*(I列/订单总数))
4.应用
提升度>1的搭配,组合售卖能带来提升。
绘制色阶图,深绿&浅绿为推荐组合。