nnUNet V2修改网络——替换为U-Net V2

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题

阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。

U-Net V2 是一种先进的医学图像分割模型,它通过改进的跳跃连接和语义细节注入(SDI)模块,有效地融合了高级语义信息和低级细节信息,从而显著提升了分割精度。相比原始 U-Net,U-Net V2 在多个数据集上表现出更高的性能,同时保持了较低的内存占用和计算复杂度,使其在医学图像分割领域具有广泛的应用前景。其网络结构如下图。
U-Net V2网络结构

一 准备工作

1. 安装dynamic-network-architectures

点击

### 集成注意力机制模块到nnUNet 在医学图像分割领域,nnUNet是一个广泛使用的框架。为了提升模型性能,在nnUNet中引入注意力机制是一种有效的方法。具体来说,PolarizedSelfAttention(PSA)机制可以被集成至nnUNet架构之中[^1]。 #### PolarizedSelfAttention简介 PSA包含通道注意力(Channel Attention, CA)和空间注意力(Spatial Attention, SA),这两种机制能够分别从不同维度强化特征图的有效信息。对于CA而言,其专注于捕捉全局跨通道的关系;而SA则聚焦于突出显示重要的区域位置。通过这种方式,网络可以获得更加鲁棒的特征表达能力。 #### 实现方法 要在nnUNet里加入并行式的PSA模块,主要步骤如下所示: - 修改`network_architecture.py`文件内的U-Net定义部分; - 将PSA层插入到编码器与解码器之间的跳跃连接处或者作为额外组件附加给每一级的卷积操作之后; - 调整训练配置参数以适应新的结构变化。 ```python from polarized_self_attention import ParallelPolarizedSelfAttention class CustomUNet(nn.Module): def __init__(self, ...): # 原始初始化函数保持不变 super().__init__() self.psa_layer = ParallelPolarizedSelfAttention(in_channels=...) def forward(self, x): ... out = self.encoder(x) out = self.decoder(out) # 应用于跳跃连接前后的PSA处理 skip_connections_with_psa = [self.psa_layer(skip_conn) for skip_conn in original_skip_connections] final_output = combine_outputs_and_skips(decoder_outs, skip_connections_with_psa) return final_output ``` 上述代码片段展示了如何创建自定义版本的UNet类,并在其内部添加了一个名为`psa_layer`的新属性来实例化平行版PSA对象。接着,在forward过程中调用了这个新添加的功能来进行数据流转。 此外,值得注意的是,除了直接嵌入特定类型的注意力单元外,还可以考虑借鉴其他先进的技术成果,比如Non-local Network以及SENet等提出的改进方案[^2]。这些方法同样有助于改善现有系统的泛化能力和预测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值