(8)同余式、幂与欧拉公式

同余式、幂与欧拉公式

在前一章我们证明了费马小定理,在p是素数且 p ∤ a p\nmid a pa,则成立,如果p换成合数,结论就不成立了,我们问是否有依赖模m的指数使得

a ? ? ? = 1   ( m o d    m ) a^{???}=1\ (\mod m) a???=1 (modm)

首先,观察到如果 g c a ( a , m ) > 1 gca(a,m)>1 gca(a,m)>1,则这是不可能的。为了说明原因,假设 a k ≡ 1   ( m o d    m ) a^k\equiv1\ (\mod m) ak1 (modm),则对某整数 y , a k = 1 + m y y,a^k=1+my y,ak=1+my,所以 g c d ( a , m ) gcd(a,m) gcd(a,m)整除 a k − m y = 1 a^k-my=1 akmy=1。换句话说,如果a的某个幂模m余1,则必有 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1。这提示我们观察与m互素的数的集合

∣ a : 1 ≤ a ≤ m   , g c d ( a , m ) = 1 ∣ \left| a:1\le a\le m\ ,gcd(a,m)=1\right| a:1am ,gcd(a,m)=1

例如

m m m ∥ a : 1 ≤ a ≤ m   , g c d ( a , m ) = 1 ∥ \| a:1\le a\le m\ ,gcd(a,m)=1 \| a:1am ,gcd(a,m)=1
1 ∥ 1 ∥ \|1 \| 1
2 ∥ 1 , 2 ∥ \|1,2 \| 1,2
3 ∥ 1 , 3 ∥ \|1 ,3\| 1,3
4 ∥ 1 , 2 , 3 ∥ \|1 ,2,3\| 1,2,3
5 ∥ 1 , 2 , 3 , 4 ∥ \|1 ,2,3,4\| 1,2,3,4
6 ∥ 1 , 5 ∥ \|1 ,5\| 1,5
7 ∥ 1 , 2 , 3 , 4 , 5 , 6 ∥ \|1 ,2,3,4,5,6\| 1,2,3,4,5,6

在1与m之间且与m互素的整数个数是个重要的量,我们赋予这个量一个名称:

ϕ ( m ) = # ∣ a : 1 ≤ a ≤ m , g c d ( a , m ) = 1 ∣ . \phi(m)=\# \left|a:1\le a\le m,gcd(a,m)=1 \right|. ϕ(m)=#a:1am,gcd(a,m)=1.

函数 ϕ \phi ϕ叫做欧拉函数。
注意p是素数时每个整数 q ≤ a < p q\le a<p qa<p都与p互素。所以,对素数p有公式

ϕ ( p ) = p − 1. \phi(p)=p-1. ϕ(p)=p1.

同费马小定理一样我们先假设要求7的幂次模10余1.不取所有数 1 ≤ a < 10 1\le a<10 1a<10而是恰好取与10互素的数,他们是

1 , 3 , 5 , 7 ( m o d    10 ) 1,3,5,7(\mod10) 1,3,5,7(mod10).

如果用7乘每个数得

7 ∗ 1 = 1 ( m o d    10 ) , 7 ∗ 3 = 3 ( m o d    10 ) 7*1=1(\mod10),7*3=3(\mod10) 71=1(mod10),73=3(mod10)
7 ∗ 5 = 5 ( m o d    10 ) , 7 ∗ 9 = 9 ( m o d    10 ) 7*5=5(\mod10),7*9=9(\mod10) 75=5(mod10),79=9(mod10)

注意重排后取相同的数。如果将他们乘起来就得到相同的乘积

( 7 ∗ 1 ) ( 7 ∗ 3 ) ( 7 ∗ 7 ) ( 7 ∗ 9 ) = 1 ∗ 3 ∗ 7 ∗ 9 ( m o d    10 ) (7*1)(7*3)(7*7)(7*9)=1*3*7*9(\mod 10) (71)(73)(77)(79)=1379(mod10)
7 4 ( 1 ∗ 3 ∗ 7 ∗ 9 ) = 1 ∗ 3 ∗ 7 ∗ 9 ( m o d    10 ) 7^4(1*3*7*9)=1*3*7*9(\mod 10) 74(1379)=1379(mod10)

消去 1 ∗ 3 ∗ 7 ∗ 9 1*3*7*9 1379 7 4 = 1 ( m o d    10 ) 7^4=1(\mod 10) 74=1(mod10)
指数4就是0到10之间且与10互素的整数个数。这就引出了欧拉公式。

欧拉公式

如果 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则

a ϕ ( m ) = 1 ( m o d    m ) a^{\phi(m)}=1(\mod m) aϕ(m)=1(modm)

证明我们已经确定了考察的数的正确集合,所以欧拉公式得证明几乎与费马小定理的证明一致。令

1 ≤ b 1 < b 2 < ⋯ < b ϕ ( m ) < m 1\le b_1<b_2<\cdots<b_{\phi(m)}<m 1b1<b2<<bϕ(m)<m

是0与m之间且与m互素的 ϕ ( m ) \phi(m) ϕ(m)个整数。
引理如果 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则数列

b 1 a , b 2 a , b 3 a , ⋯   , b ϕ ( m ) ( m o d    m ) b_1a,b_2a,b_3a,\cdots,b_{\phi(m)}(\mod m) b1a,b2a,b3a,,bϕ(m)(modm)

b 1 , b 2 , b 3 , ⋯   , b ϕ ( m ) ( m o d    m ) b_1,b_2,b_3,\cdots,b_{\phi(m)}(\mod m) b1,b2,b3,,bϕ(m)(modm)

相同,尽管他们可能次序不同。
引理的证明注意到如果b与m互素,则 a b ab ab也与m互素。从而数列

b 1 a , b 2 a , b 3 a , ⋯   , b ϕ ( m ) a ( m o d    m ) b_1a,b_2a,b_3a,\cdots,b_{\phi(m)}a(\mod m) b1a,b2a,b3a,,bϕ(m)a(modm)

中的每个数同余于数列

b 1 , b 2 , b 3 , ⋯   , b ϕ ( m ) ( m o d    m ) b_1,b_2,b_3,\cdots,b_{\phi(m)}(\mod m) b1,b2,b3,,bϕ(m)(modm)

中的一个数,进而,每个数列都有 ϕ ( m ) \phi(m) ϕ(m)个数。因此,如果能够证明第一个数列中的数对于模m不同,则就得到两个数列(重排后)相同。
假设从第一个数列中取两个数 b j a b_ja bja b k a ( m o d    m ) b_ka(\mod m) bka(modm),并假设它们同余,

b j a = b k a ( m o d    m ) b_ja=b_ka(\mod m) bja=bka(modm)

m ∣ ( b j − b k ) a m|(b_j-b_k)a m(bjbk)a。但是m与a互素,因此得到 m ∣ b j − b k m|b_j-b_k mbjbk。另一方面, b j , b k b_j,b_k bj,bk在1与m之间,这蕴含 ∣ b j − b k ∣ ≤ m − 1 \left|b_j-b_k\right|\le m-1 bjbkm1。仅有一个数的绝对值严格小于m且被m整除,这个数是0.从而 b j = b k b_j=b_k bj=bk。这说明数列

b 1 a , b 2 a , b 3 a , ⋯   , b ϕ ( m ) ( m o d    m ) b_1a,b_2a,b_3a,\cdots,b_{\phi(m)}(\mod m) b1a,b2a,b3a,,bϕ(m)(modm)

中的数模m不同,这就完成了引理的证明。
使用引理就可以很容易的完成欧拉公式的证明

( b 1 a ) ∗ ( b 2 a ) ∗ ⋯ ∗ ( b ϕ ( m ) a ) = b 1 ∗ b 2 ∗ ⋯ ∗ b ϕ ( m ) ( m o d    m ) (b_1a)*(b_2a)*\cdots*(b_{\phi(m)}a)=b_1*b_2*\cdots*b_{\phi(m)}(\mod m) (b1a)(b2a)(bϕ(m)a)=b1b2bϕ(m)(modm)

右边提出 ϕ ( m ) \phi(m) ϕ(m)个a得到

a ϕ ( m ) B = B ( m o d    m ) , 其 中 B = b 1 b 2 b 3 ⋯ b ϕ ( m ) a^{\phi(m)}B=B(\mod m),其中B=b_1b_2b_3\cdots b_{\phi(m)} aϕ(m)B=B(modm),B=b1b2b3bϕ(m)

最后由于每个bi与m互素,我们的B与m互素。这表明可从两边消去B得到欧拉公式

a ϕ ( m ) = 1 ( m o d    m ) a^{\phi(m)}=1(\mod m) aϕ(m)=1(modm)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值